144 resultados para Marine pelagic community
Resumo:
The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE III.
Resumo:
Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n/100 m**3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind/m**3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 m above and showed maximum abundance of 65,000 ind/m**3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind/m**3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho-pelagic coupling. Neglecting this community may cause severe underestimates of the stock of elagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.
Resumo:
Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
At Ocean Drilling Program (ODP) Leg 189 Sites 1170-1172, the climatologically critical Eocene-Oligocene (E-O) transition is barren of any calcareous microfossils but contains rich marine organic walled dinoflagellate cyst (dinocyst) and diatom assemblages, suitable for detailed biostratigraphic and paleoenvironmental analysis. The resulting first-ever integrated dinocyst/diatom magnetostratigraphy allows confident correlation of the E-O interval between all Leg 189 sites, including Site 1168. Our correlations indicate that the (deep) opening of the Tasmanian Gateway occurred quasi-synchronously throughout the Tasmanian region, starting at ~35.5 Ma. At Sites 1170-1172, quantitatively, three distinct dinocyst assemblages may be distinguished that reflect the relatively rapid and pronounced stepwise environmental changes associated with the E-O transition in the Tasmanian region, from a pro-deltaic setting to a deep marine pelagic setting. Moreover, synchronous with the deepening of the gateway, at the southern and eastern Sites 1170-1172, typical endemic Antarctic assemblages were replaced by more cosmopolitan dinocyst communities. In marked contrast, at Site 1168 off western Tasmania, endemic Antarctic taxa are virtually absent during the E-O transition. At Sites 1170-1172, the endemic Antarctic dinocyst assemblage (Transantarctic Flora) drastically changes into a more cosmopolitan assemblage at ~35.5 Ma, with a more offshore character, reflecting the arrival of different oceanographic and environmental conditions associated with the deepening of the Tasmanian Gateway. In turn, this assemblage grades at ~34 Ma into one more typical for even more offshore and/or upwelling conditions at Site 1172. In slightly younger deposits at all sites, organic microfossils are virtually absent, reflecting winnowing and oxidation, indicative of a next step of oceanographic development. This phase may be dated as close to the Oceanic Anoxic (Oi)-1 18O (Antarctic glaciation) event (~33.3 Ma). In a single productive sample from the earliest Oligocene the northern Site 1172, a relatively warm-water cosmopolitan assemblage has been recovered. This aspect contrasts findings from coeval deposits from the Ross Sea, where endemic Antarctic species remain dominant. Somewhere between the paleogeographic positions of Site 1172 and the Ross Sea, a strong differentiation of surface waters occurred in the earliest Oligocene, possibly reflecting the onset of the Antarctic Circumpolar Current.
Resumo:
Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance heterotrophic dinoflagellates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of heterotrophic dinoflagellates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known dinoflagellate feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C dinoflagellate-1 h-1, µm3 dinoflagellate-1 h-1 and prey cell dinoflagellate-1 h-1; clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.
Resumo:
Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.
Resumo:
Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the d15N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.
Resumo:
Forty-six sightings of bowhead whales have been reported from the Svalbard area between 1940 and 2009. But, only three of these sightings are reported prior to 1980. Most observations involve only one or two whales, but groups of up to seven individuals have been seen recently. Increased ship traffic, particularly cruise-based tourism, in the north undoubtedly provides more opportunities for spotting this species, and the establishment of a structured cetacean sighting programme, as well as increase in effort in documenting sightings from a wider marine user-community, likely all play a role in more records being documented in recent years. The absence of a dedicated monitoring programme for ice-associated cetaceans and the generally low scientific activity level in this field in Svalbard Waters hampers firm conclusions about the trends in abundance of bowhead whales in the Svalbard area.