68 resultados para Marguerite, soeur


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During ODP Leg 209, a magma-starved area of the Mid-Atlantic Ridge (MAR) was drilled in the vicinity of the Fifteen-Twenty Fracture Zone (FZ) that offsets one of the slowest portions of the spreading ridge. We present here the results of a bulk rock multi-elemental study of 27 peridotites drilled at Sites 1272 and 1274 (to the south and the north of the FZ, respectively). The peridotites comprise mainly of harzburgites with minor dunites. Clinopyroxene (Cpx), which is interstitial and interpreted as secondary, is observed in Site 1274 peridotites. Sites 1272 and 1274 peridotites have low Al2O3 contents (<1 anhydrous wt.%), high Mg# (>91.5), and bulk rock trace elements compositions mostly below 0.1X primitive mantle (PM). These peridotites, and in particular Site 1272 peridotites, represent the most depleted peridotites yet sampled at a slow spreading ridge. Their compositions indicate high degrees of partial melting and melt extraction. A single open-system melting event (melting plus percolation of melts produced within upwelling mantle) can explain their highly depleted yet linear chondrite-normalized REE patterns, characterized by a steady depletion from HREE to LREE. Late melt-rock reactions and precipitation of Cpx explains the slightly less depleted compositions of Site 1274 peridotites. Hence, the differences in composition between Sites 1272 and 1274 peridotites do not provide evidence for regional variations in the degrees of partial melting from the south to the north of the FZ. The occurrence of highly refractory peridotites in the Fifteen-Twenty area suggests we sampled a more actively convecting mantle than generally supposed below slow spreading centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IODP Hole U1309D (Atlantis Massif, Mid-Atlantic Ridge 30°N) is the second deepest hole drilled into slow spread gabbroic lithosphere. It comprises 5.4% of olivine-rich troctolites (~ > 70% olivine), possibly the most primitive gabbroic rocks ever drilled at mid-ocean ridges. We present the result of an in situ trace element study carried out on a series of olivine-rich troctolites, and neighbouring troctolites and gabbros, from olivine-rich intervals in Hole U1309D. Olivine-rich troctolites display poikilitic textures; coarse-grained subhedral to medium-grained rounded olivine crystals are included into large undeformed clinopyroxene and plagioclase poikiloblasts. In contrast, gabbros and troctolites have irregularly seriate textures, with highly variable grain sizes, and locally poikilitic clinopyroxene oikocrysts in troctolites. Clinopyroxene is high Mg# augite (Mg# 87 in olivine-rich troctolites to 82 in gabbros), and plagioclase has anorthite contents ranging from 77 in olivine-rich troctolites to 68 in gabbros. Olivine has high forsterite contents (82-88 in olivine-rich troctolites, to 78-83 in gabbros) and is in Mg-Fe equilibrium with clinopyroxene. Clinopyroxene cores and plagioclase are depleted in trace elements (e.g., Ybcpx ~ 5-11 * Chondrite), they are in equilibrium with the same MORB-type melt in all studied rock-types. These compositions are not consistent with the progressively more trace element enriched (evolved) compositions expected from olivine rich primitive products to gabbros in a MORB cumulate sequence. They indicate that clinopyroxene and plagioclase crystallized concurrently, after melts having the same trace element composition, consistent with crystallization in an open system with a buffered magma composition. The slight trace element enrichments and lower Cr contents observed in clinopyroxene rims and interstitial grains results from crystallization of late-stage differentiated melts, probably indicating the closure of the magmatic system. In contrast to clinopyroxene and plagioclase, olivine is not in equilibrium with MORB, but with a highly fractionated depleted melt, similar to that in equilibrium with refractory oceanic peridotites, thus possibly indicating a mantle origin. In addition, textural relationships suggest that olivine was in part assimilated by the basaltic melts after which clinopyroxene and plagioclase crystallized (impregnation). These observations suggest a complex crystallization history in an open system involving impregnation by MORB-type melt(s) of an olivine-rich rock or mush. The documented magmatic processes suggest that olivine-rich troctolites were formed in a zone with large magmatic transfer and accumulation, similar to the mantle-crust transition zone documented in ophiolites and at fast spreading ridges.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: