291 resultados para Mangrove biogeochemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Darwin Mounds are a series of small (<=5 m high, 75-100 m diameter) sandy features located in the northern Rockall Trough. They provide a habitat for communities of Lophelia pertusa and associated fauna. Suspended particulate organic matter (sPOM) reaching the deep-sea floor, which could potentially fuel this deep-water coral (DWC) ecosystem, was collected during summer 2000. This was relatively "fresh" (i.e. dominated by labile lipids such as polyunsaturated fatty acids) and was derived largely from phytoplankton remains and faecal pellets, with contributions from bacteria and microzooplankton. Labile sPOM components were enriched in the benthic boundary layer (~10 m above bottom (mab)) relative to 150 mab. The action of certain benthic fauna that are exclusively associated with the DWC ecosystem (e.g. echiuran worms) leads to the subduction of fresh organic material into the sediments. The mound surface sediments are enriched in organic carbon, relative to off-mound sites. There is no evidence for hydrocarbon venting at this location.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This publication presents results of microbiological and biogeochemical studies in the White Sea. Material was obtained during a series of expeditions in 1999-2002. The studies were carried out in the open part of the White Sea, in the Onega, Dvina and Kandalaksha Bays, as well as in the intertidal zone of the Kandalaksha Bay. Quantitative characteristics of activity of microbial processes in waters and bottom sediments of the White Sea were obtained. The total number of bacteria was equal to 150000-800000 cells/ml, and intensity of dark CO2 assimilation was equal to 0.9-17 µg C/l/day. Bacterial sulfate reduction was equal to 3-150 mg S/m**2/day, and methane formation and oxidation was equal to 13-6840 and 20-14650 µl CH4/m**2/day, respectively. Extremely high values of intensity of all principal microbial processes were found in intertidal sediments rich in organic matter: under decomposing macrophytes, in local pits at the lower intertidal boundary, and in the mouth of a freshwater brook. Average hydrogen sulfide production in highly productive intertidal sediments was 1950-4300 mg S/m**2/day, methane production was 0.5-8.7 ml CH4/m**2/day, and intensity of methane oxidation was up to 17.5 ml CH4/m**2/day. Calculations performed with account for areas occupied by microlandscapes of increased productivity showed that diurnal production of H2S and CH4 per 1 km**2 of the intertidal zone (August) was estimated as 60.8-202 kg S/km**2/day and 192-300 l CH4/km**2/day, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of biogeochemical parameters in coral reef sediments at carbon dioxide vents off Upa-Upasina (Normandy Island, Papua-New Guinea). The data includes in-situ micro/minisensor profiles, sediment characteristics, microbial and meiofauna abundances of vent sediments and reference sites without vent influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NA64-Mesozooplankton dataset contains biogeochemistry and mesozooplankton data collected in a series of 9 cruises in the Northern Adriatic completed from January 1965 to September 1965 monthly, and December 1965. Biogeochemistry sampling was undertaken using 5L Nansen bottles fired at 0m, 5m, 10m, 20m, 30m and/or bottom depths. The dataset includes 709 samples analysed for nitrate, phosphate, temperature, salinity and density. Mesozooplankton sampling was undertaken at the same locations as for biogeochemistry, using two different net (Hensen non-closing and Appstein closing net). The dataset includes 146 samples analysed for mesozooplankton composition (at higher taxonomic level), abundance and volume settlement. Temperature was measured with a standard oceanographic thermometers. Salinity was determined by titration after Mohr-Knudsen using standardised water I.C.E.S. Copenhagen with 0,01 permil accuracy. Density was calculated using the following equation Sigma-t = T - (sigma 0 + 0,1324) 1 - At + Bt (sigma 0 - 0,1324). Phosphate samples for the determination of nutrients were collected in 500 ml and filtrated through 0,3 µm membrane filter. 3ml of cloroform was added to stabilize the samples. They were analysed after few days in the laboratory on land. Nitrate samples for the determination of nutrients were collected in 500 ml and filtrated through 0,3 µm membrane filter. 3ml of cloroform was added to stabilize the samples. They were analysed after few days in the laboratory on land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.