80 resultados para Maçã pink lady
Resumo:
We explore the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales. We focus on the late Oligocene through Pleistocene (27-0 Ma) history of paleotemperatures and the evolution of the d18O values of seawater (d18Osw) at a temporal resolution of ~100-200 kyr. Absolute paleotemperature estimates depend on assumptions of how Mg/Ca ratios of seawater have changed over the past 27 Myr, but relative changes that occur on geologically brief timescales are robust. Results indicate that at the Oligocene to Miocene boundary (23.8 Ma), temperatures lag the increase in global ice-volume deduced from benthic foraminiferal d18O values, but the smaller-scale Miocene glaciations are accompanied by ocean cooling of -1°C. During the mid-Miocene phase of Antarctic ice sheet growth (~15-13 Ma), water temperatures cool by ~3°C. Unlike the benthic foraminiferal d18O values, which remain relatively constant thereafter, temperatures vary (by 3°C) and reach maxima at ~12 and ~8.5 Ma. The onset of significant Northern Hemisphere glaciation during the late Pliocene is synchronous with an ~4°C cooling at site 747. A comparison of our d18Osw curve to the Haq et al. (1987, doi:10.1126/science.235.4793.1156 ) sea level curve yields excellent agreement between sequence boundaries and times of increasing seawater 18O/16O ratios. At ~12-11 Ma in particular, when benthic foraminiferal d18O values do not support a further increase in ice volume, the d18Osw curve comes to a maximum that corresponds to a major mid-Miocene sea level regression. The agreement between the character of our Mg/Ca-based d18Osw curve and sequence stratigraphy demonstrates that benthic foramaniferal Mg/Ca ratios can be used to trace the d18Osw on pre-Pleistocene timescales despite a number of uncertainties related to poorly constrained temperature calibrations and paleoseawater Mg/Ca ratios. The Mg/Ca record also highlights that deep ocean temperatures can vary independently and unexpectedly from ice volume changes, which can lead to misinterpretations of the d18O record.
Resumo:
Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.
Resumo:
The widely accepted age estimate for the onset of glaciation in the Northern Hemisphere ranges between 2 and 15 million years ago (Ma). However, recent studies indicate the date for glacial onset may be significantly older. We report the presence of ice-rafted debris (IRD) in ~44 to 30 Ma sediments from the Greenland Sea, evidence for glaciation in the North Atlantic during the Middle Eocene to Early Oligocene. Detailed sedimentological evidence indicates that glaciers extended to sea level in the region, allowing icebergs to be produced. IRD may have been sourced from tidewater glaciers, small ice caps, and/or a continental ice sheet.
Resumo:
The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.
Resumo:
Site 958 was drilled to monitor the late Neogene history of both continental aridity in northwestern Africa and the Canary Current distant from nearshore upwelling. Based on magnetostratigraphy, biostratigraphic datums, variations in carbonate, coarse fraction components, and the species composition of planktonic foraminifers, as well as using the d18O records of Globigerinoides ruber (white), we established a splice between Holes 958A and 958B and a stratigraphic age scale deciphering Milankovitch cycles. Over the last 630 k.y., sedimentation rates amount to 2.9 cm/k.y., and to 2.05-2.53 cm/k.y. back to the base of the Pleistocene. Extremely low rates of 0.4 cm/k.y. and a reworking of fossils mark the late Pliocene. The first continuous, long, sea-surface temperature (SST) record from the center of the Canary Current, which is based on foraminifer species census data, depicts a general temperature decrease in the late Pliocene, lower SST and high seasonalities of up to 6°C ~2.0-1.6 Ma, a warmer interval from 1.6 Ma to ~0.85 Ma, again lower SST and higher seasonalities until 0.33 or 0.26 Ma, and a final warmer interval, lasting until at least 50 ka, possibly reflecting the attenuated dynamics of the Canary Current. Especially over the last 400 k.y., since Stage 11, glacial stages are hardly reflected by cold SST cycles, except for various abrupt and extremely short cooling events amounting to D6°C, which possibly result from North Atlantic Heinrich events. Similar, but not necessarily synchronous, events of short-term, extremely high values occur in the paleoproductivity and (d13Cbased) paleonutrient records, which indicate a generally low primary production averaging to 180 g C m**-2 yr**-1 at 50-330 ka and about 300 g C m**-2 yr**-1 back to the base of the Pleistocene. Near 1.2-1.6 Ma, the grain-size and magnetic susceptibility records document a significant increase in the discharge of south Saharan/Sahelian dust, possibly linked to increasing aridity.
Resumo:
Various types of abrupt/millennial-scale climate variability such as Dansgaard/Oeschger and Heinrich Events characterized the last glacial period. Over the last decade, a number of studies demonstrated that such millennial-scale climate variability was not limited to the last glacial but inherent to Quaternary climate. Here we review the occurrence and origin of millennial ice-rafting events in the North Atlantic during the late Pliocene and Pleistocene (last 3.4 Ma) with a special focus on North Atlantic Hudson Strait (HS) Heinrich(-like) Events. Besides a clear biomarker signature, we show that Heinrich Layers 5, 4, 2, and 1 in marine sediment cores from across the North Atlantic all bear the organic geochemical fingerprint of the Hudson area. Using this framework and combining previously published results, detailed investigations into the organic and inorganic chemistry of ice-rafted debris (IRD) found across the North Atlantic demonstrate that prior to MIS 16 (~ 650 ka) IRD in the North Atlantic did not originate from the Hudson area of northern Canada. The signature of this early IRD is distinctly different compared to that of HS Heinrich Layers. Rather ice-rafting events during the late Pliocene and early Pleistocene predominantly emanated from the calving of the Greenland and Fennoscandian ice sheets and possibly minor contributions from local ice streams from the North American and British ice sheets. Compared to North Atlantic HS Heinrich Events, these early Pleistocene IRD-events had a limited impact on surface water characteristics in the North Atlantic. North Atlantic HS Heinrich(-like) Events first occurred during MIS 16. At the same time, the dominant frequency in silicate-rich IRD accumulation shifted from the obliquity (41-ka) to a 100-ka frequency across the North Atlantic. Iceberg survivability or a change in iceberg trajectory likely did not control this change in IRD-regime. These results lend further support for the existing hypothesis that an increase in size (thickness) of the Laurentide ice sheet controls the occurrence of North Atlantic HS Heinrich Events, favoring an internal dynamic mechanism for their occurrence.
Resumo:
Clay mineral assemblages for the last 10 m.y. are described for Site 823, at 16°S in the Queensland Trough, to the northeast of Australia. Largely unaffected by diagenetic influences, these mostly express the evolution of northeastern Australian continental environments during the late Neogene: (1) beginning during the late Miocene at about 7.0 Ma is an increase of illite derived from rocky substrates at the expense of smectite from deeply weathered soils; this increase was the result of increasing aridity in the Australian interior and globally cooler temperatures, associated with increases in Antarctic glaciation; (2) concomitant and further increases of kaolinite fluxes to the Queensland Trough during the late Miocene-early Pliocene largely reflect an increase in rainfall in northeastern Australia; (3) increases in both soil- and rock-derived minerals probably intensified as a result of late Neogene uplift of the eastern highlands; (4) clay-mineral associations during the Pliocene and Pleistocene display minor variations only and probably resulted in part from differential settling and sea-level changes; (5) similar trends of clay-mineral variations occur at both ODP Site 823 and DSDP Site 588 (Lord Howe Rise). Less abundant kaolinite relative to illite at Site 588 nevertheless suggests a southward decrease of continental humidity and/or of the eastern highlands uplift; (6) influences of global climate and oceanic and atmospheric circulations on clay-mineral associations dominated during the late Miocene and were progressively replaced by influences of more regional environmental variations during the Pliocene and especially the Pleistocene.
Resumo:
Tropical planktonic foraminifers occur throughout the sequences at all sites of Leg 85, and the standard planktonic foraminiferal zonation of Blow (1969) is applicable to most of the recovered sequences. However, the abundance and state of preservation of foraminifers decline markedly in certain intervals because of the effects of dissolution. Although siliceous microfossils studied on this leg indicate recovery of nearly complete records for the Pleistocene to Oligocene interval, the planktonic foraminiferal biostratigraphy is interrupted by strongly dissolved sections at all sites. Particularly, faunas assignable to Zone N7 (early Miocene) and Zone N15-16 (early late Miocene) are almost totally unrecognizable throughout the eastern equatorial Pacific. Well-preserved and diverse planktonic foraminifers occur in the lower middle Miocene, where the evolutionary developments of Orbulina universa d'Orbigny and Globorotalia fohsi Cushman and Ellisor are well represented. The Orbulina first appearance datum is observed to be nearly coincident with the last occurrence level of the diatom Annellus californicus Tempère, thus .establishing an age of 15 Ma for this datum by using the paleomagnetic calibration of the diatom datum. Moderately well-preserved late Eocene planktonic foraminifers occur in the carbonate sediments immediately overlying the basalt basement at Sites 573 and 574. The Eocene-Oligocene faunal transition, however, is masked at both sites by an intercalation of metalliferous layers containing no planktonic foraminifers.
Resumo:
Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.