679 resultados para MMS
Resumo:
Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-Si02. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, in¬cluding the manganese nodule.
Resumo:
Deep-sea deposits, which resemble in nearly every respect the deep-sea oozes have been observed in many islands of the East-Indian Archipelago, notably the islands of Borneo, Rotti and Timor. Manganese nodules are found in equivalents of deeep-sea red clays on Timor and Rotti island. In this paper, those relative to red clay deposits dating from a Cretaceous ocean are analysed in detail in the vicinity of the town of Niki Niki in Western Timor.
Resumo:
The distribution of radioactivities in a large polymetallic encrustation (TECHNO) sampled from the Pacific sea floor has been studied in great detail. The study includes measurements of the long-lived U and Th decay series isotopes, alpha-particle tracks and SUP-10 Be and SUP-26 Al (Results on the latter two cosmonuclides have been reported by Guichard, Reyss and Yokoyama, 1978). The data are discussed in terms of their implication on age dating of the sample. Two interpretations of the data are presented leading to vastly different time scales for the formation of the sample. Here the opinion is divided among the authorship. One group, as well as Guichard et al (1978), favours the million-years scale and the other favors scale measured in thousands of years. The principal pros-and-cons aspects of the two views are mentioned.
Resumo:
Two manganese nodules having a high clay content, a low Mn/Fe ratio, and low contents of valuable metals (Ni 0.25%, Cu 0.17%, Co 0.06%) were recovered in a grab sample during a short geological cruise in HMAS Kimbla in the southern Tasman Sea in May 1979. Five stations were occupied. Free-fall grabs recovered sediment or pumice from four stations; nothing was recovered from the fifth. The carbonate compensation depth in the region is about 4500 m. Reddish brown clay, but no manganese nodules, was recovered in the central southern Tasman Sea, from depths of 4900-5100 m. The nodules, together with grey calcareous mud, were obtained from a depth of 4300 m, farther to the northwest, near Gascoyne Seamount (250 n. miles SE of Sydney). The results suggest nodules with high metal values are likely to exist only in the broad and deep depression in the central southern Tasman Sea southeast of Gascoyne Seamount, where sedimentation rates are low and oxidising conditions prevail. Whether nodule fields are present or not will only be resolved by considerably more sampling.
Resumo:
Manganese nodules and manganese carbonate concretions occur in the upper 10-15 cm of the Recent sediments of Loch Fyne, Argyllshire in water depths of 180-200 m. The nodules are spherical, a few mm to 3 cm in diameter, and consist of a black, Mn-rich core and a thin, red, Fe-rich rim. The carbonate occurs as irregular concretions, 0.5-8 cm in size, and as a cement in irregular nodule and shell fragment aggregates. It partially replaces some nodule material and clastic silicate inclusions, but does not affect aragonitic and calcitic shell fragments. The nodules are approximately 75% pure oxides and contain 30% Mn and 4% Fe. In the cores, the principal mineral phase is todorokite, with a Mn/Fe ratio of 17. The rim consists of X-ray amorphous Fe and Mn oxides with a Mn/Fe ratio of 0.66. The cores are enriched, relative to Al, in K, Ba, Co, Mo, Ni and Sr while the rims contain more P, Ti, As, Pb, Y and Zn. The manganese carbonate has the composition (Mn47.7 Ca45.1 Mg7.2) CO3. Apart from Cu, all minor elements are excluded from significant substitution in the carbonate lattice. Manganese nodules and carbonates form diagenetically within the Recent sediments of Loch Fyne. This accounts for the high Mn/Fe ratios in the oxide phases and the abundance of manganese carbonate concretions. Mn concentrations in the interstitial waters of sediment cores are high (ca. 10 ppm) as also, by inference, are the dissolved carbonate concentrations.
Resumo:
Information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition.
Resumo:
Manganese nodules containing up to 22 percent manganese oxide were found in Green Bay and the western and northern parts of Lake Michigan. The chemical composition of these nodules resembles that of shallow-water lacustrine and marine nodules. The manganese content of interstitial water is in some places enriched as much as 4000 times over that of lake water.
Resumo:
Visual observations of manganese deposits on the Blake plateau from a manned submersible indicate that the occurrence of manganese as nodules, slabs, or pavement may be related to localized environmental conditions. Manganese is concentrated at the crests of sand waves and, in areas of gentle slope, grades locally from nodules to solid pavement.
Resumo:
It is the purpose of this paper to record information concerning the distribution and occurrence of manganiferous concretions and other manganese oxide deposits that develop on certain lake bottoms. During the summer of 1935 several days were devoted to a study of this type of lake bottom deposit in various parts of Nova Scotia. Lake studies in Ontario have extended the known distribution from lakes on or near the Atlantic coast to lakes in southern Ontario. During the writer's first work on lacustrine manganiferous deposits the concretions of manganese oxide which were found were almost entirely limited to the relatively shallow parts of the lakes examined. Other lakes are now known where the manganese oxide appears to occur only in the maximum depths.
Resumo:
Uranium, radium, thorium and ionium were determined directly on seven concretions from three stations in the Indian Ocean, and on two concretions and a manganese-rich crust from two stations in the Pacific Ocean. The uranium content averages 3 to 5 gamma/g and the thorium content varies only slightly, but the Th/U ratio in the concretions is typically 2 to 5 in the Indian Ocean and 5 to 15.5 in the Pacific. The ionium content ranges from 1.0 x 10-9 to 3.6 10**-9 g/g in concretions from both oceans. Radium is more abundant in specimens from the Pacific Ocean (Ra = 3 - 12.7 x 10**-11 g/g) than from the Indian Ocean (1.5 - 5.2 x 10**-11 g/g). Analyses for Ca, Mn, Fe, Si, Ni, P, and ignition loss are also given. Radioactive equilibria between uranium, ionium, and radium are strongly disturbed throughout the concretions, and the RA/U and lo/U ratios generally exceed equilibrium ratios. Migration of radium from interior layers was established, so that neither determination of the ages of the concretions nor of their rates of growth can be considered reliable. The age of the concretions cannot exceed 800,000 years, and all grew within relatively short periods of time; there may have been "dormant" periods during growth. Estimates of growth rates are calculated from the radium and ionium contents; they show marked discordance.
Resumo:
This report studies the principal paramters governing the distribution of iron-manganese concretions on the sea floor of the Indian Ocean, as well as their petrography and mineralogy. The results are mainly based on the recoveries made during voyages 31, 33 and 35 of the "Vityaz"' (1959-1962) and partly during voyages 36 and 41 (1964-1966). During these voyages samples of Mn concretions and Mn crust were collected (by bottom grabs, cores, trawlings, and dredgings) at 39 stations. The following account is devoted to the problems concerning the geochemistry of these concretions.
Resumo:
A manganese oxide crust from an extensive deposit in the median valley of the Mid-Atlantic Ridge was found to be unusually high in manganese (up to 39.4% Mn), low in Fe (as low as 0.01% Fe), low in trace metals and deficient in Th230 and Pa231 with respect to the parent uranium isotopes in the sample. The accumulation rate is 100 mm to 200 mm/10 million year, or 2 orders of magnitude faster than the typical rate for deep-sea ferromanganese deposits. The rapid growth rate and unusual chemistry are consistent with a hydrothermal origin or with a diagenetic origin by manganese remobilized from reduced sediments. Because of the association with an active ridge, geophysical evidence indicative of hydrothermal activity, and a scarcity of sediment in the sampling area, we suggest that a submarine hot spring has created the deposit.