134 resultados para MDA-MB-231
Resumo:
For the production of the orthophoto map Vernagtferner 1979, scale I: 10000, photographs of the flight "Hintereisferner 1979" were used, which have been found to be very suitable for differential rectification. Control points were determined before the flight took place. The processing of nine stereopairs was carried out on an analytical plotter. Simultaneously with the on-line plotting of the contour lines the reference data for the computation of the profiles for the differential rectification were recorded. The orthophoto map was covered by four aerial photographs. A smooth data transfer was ensured because the same computer was used for the data acquisition and the differential rectification. Two printing originals were prepared, one for the outline drawings with contour lines and another for the orthophoto. The print was done in black for the two copies. The data acquisition, the computation of the scanning profiles for the othoprojector and the procedure of the differential rectification are described. The reason for the use of on-line drawn contour lines is explained. Further applications, also for digital contour lines, are introduced. Possibilities for the achievement of high photo quality during the reproduction are discussed.
Resumo:
We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4/yr), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4/yr) mainly from landfills and the energy sector (12 Gg CH4/yr), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4/yr), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4/yr), while forest soils are a CH4 sink (approx. -2.8 Gg CH4/yr), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.