132 resultados para MARC format


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bathymetry raster with a resolution of 5 m x 5 m was processed from unpublished single beam data from the Argentine Antarctica Institute (IAA, 2010) and multibeam data from the United Kingdom Hydrographic Office (UKHO, 2012) with a cell size of 5 m x 5 m. A coastline digitized from a satellite image (DigitalGlobe, 2014) supplemented the interpolation process. The 'Topo to Raster' tool in ArcMap 10.3 was used to merge the three data sets, while the coastline represented the 0-m-contour to the interpolation process ('contour type option').

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ETOPO1 is a 1 arc-minute global relief model of Earth's surface that integrates land topography and ocean bathymetry. It was built from numerous global and regional data sets. Data were converted to the PanMap layer format in 14 contour lines from 500 to 7000 meter in steps of 500 m. The link provides a zip-archive (1.1 MB) with *.lay files. The PanMap Mini-GIS software is published at doi:10.1594/PANGAEA.104840.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the production of the orthophoto map Vernagtferner 1979, scale I: 10000, photographs of the flight "Hintereisferner 1979" were used, which have been found to be very suitable for differential rectification. Control points were determined before the flight took place. The processing of nine stereopairs was carried out on an analytical plotter. Simultaneously with the on-line plotting of the contour lines the reference data for the computation of the profiles for the differential rectification were recorded. The orthophoto map was covered by four aerial photographs. A smooth data transfer was ensured because the same computer was used for the data acquisition and the differential rectification. Two printing originals were prepared, one for the outline drawings with contour lines and another for the orthophoto. The print was done in black for the two copies. The data acquisition, the computation of the scanning profiles for the othoprojector and the procedure of the differential rectification are described. The reason for the use of on-line drawn contour lines is explained. Further applications, also for digital contour lines, are introduced. Possibilities for the achievement of high photo quality during the reproduction are discussed.