36 resultados para Luminescence dating (OSL)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New geochronometers are needed for sediments of the Arctic Ocean spanning at least the last half million years, largely because oxygen-isotope stratigraphy is relatively ineffective in this ocean, and because other dating techniques require significant assumptions about sedimentation rates. Multi-aliquot luminescence sediment-dating procedures were applied to polymineral, fine-silt samples from 9 core-top and 37 deeper samples from 20 cores representing 19 sites across the Arctic Ocean. Most samples have independent age assignments and other known properties (e.g., % coarse fraction, % carbonate, U-Th isotopes). Thick-source alpha-particle counting indicates that for most regions the contribution of measured unsupported 230Th and 231Pa to calculated dose rates is dating of polymineral fine-silt fractions from core-top and near-core-top samples indicates that three sites (mainly from the western Arctic Ocean) have long-bleach inherited ages of only 3-7 kyr, suggesting potential for accurate PSL and TL dating without an inherited correction when older interglacial samples are selected. Samples from a giant gravity core from the western region (Northwind Ridge) yield acceptable long-bleach TL and IR-PSL ages up to 100 kyr. A sample from the eastern region (near Gakkel Ridge) gives a long-bleach age of ca 60 kyr, agreeing with an independent age assignment. Several samples in the 10-40 kyr 14C range from other sites produce large long-bleach age overestimates, indicating the variable effects of ice-rafting and other depositional and bottom-currentreworking (re-suspension) processes during glacial stages. Short-bleach dating tests provide IR-PSL age estimates for core tops that appear to penetrate the 'reworking veil' of inherited ages, and not only suggest a procedure to greatly reduce long-bleach inherited ages but also have implications for the 14C reservoir correction. This study identifies the most promising regions for future luminescence dating, and suggests that for several regions of the Arctic Ocean, interglacial-stage (foram-'rich') sediments from ridge tops are preferred for the fine-grain luminescence dating methods.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90-110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75-95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65-75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55-75 ka BP. The Barents-Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10-20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The age correlation between the three main geomorphological terraces in the Lena Delta, especially that of the second sandy terrace (Arga Island) and the third terrace (Ice Complex and underlying sands) is still being discussed, Knowledge about the age of the lee Complex and its underlying sands, and the Arga sands is necessary for understanding the past and modern structure of the delta. Geochronometrie data have been acguired for three sediment seguences from the Lena Delta by lumineseence dating using the potassium feldspar IR-OSL technique. Additionally, 14C dates are available for geochronological discussion. Typical sediments of the upper part of Arga Island as found in the area of Lake Nikolay are of Late Pleistoeene age (14.5-10.9 ka), Typical third terrace sediments from two seguenees located at the Olenyokskaya branch are older. At the profile "Nagym" sandy seguences were most probably deposited between about 65 ka and 50 ka before present. The lower part of the sandy seguence at "Kurungnakh Island" is possibly older than the sediments of the section at Nagym. However, methodological difficulties in luminescence dating (insufficient bleaching at the time of deposition) and younger 14C dates make the discussion of the results difficult.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calmette Bay within Marguerite Bay along the western side of the Antarctic Peninsula contains one of the most continuous flights of raised beaches described to date in Antarctica. Raised beaches extend to 40.8 m above sea level (masl) and are thought to reflect glacial isostatic adjustment due to the retreat of the Antarctic Peninsula Ice Sheet. Using optically stimulated luminescence (OSL), we dated quartz extracts from cobble surfaces buried in raised beaches at Calmette Bay. The beaches are separated into upper and lower beaches based on OSL ages, geomorphology, and sedimentary fabric. The two sets of beaches are separated by a prominent scarp. One of our OSL ages from the upper beaches dates to 9.3 thousand years ago (ka; as of 1950) consistent with previous extrapolation of sea-level data and the time of ice retreat from inner Marguerite Bay. However, four of the seven ages from the upper beaches date to the timing of glaciation. We interpret these ages to represent reworking of beaches deposited prior to the Last Glacial Maximum (LGM) by advancing and retreating LGM ice. Ages from the lower beaches record relative sea-level fall due to Holocene glacial-isostatic adjustment. We suggest a Holocene marine limit of 21.7 masl with an age of 5.5-7.3 ka based on OSL ages from Calmette Bay and other sea-level constraints in the area. A marine limit at 21.7 masl implies half as much relative sea-level change in Marguerite Bay during the Holocene as suggested by previous sea-level reconstructions. No evidence for a relative sea-level signature of neoglacial events, such as a decrease followed by an increase in RSL fall due to ice advance and retreat associated with the Little Ice Age, is found within Marguerite Bay indicating either: (1) no significant neoglacial advances occurred within Marguerite Bay; (2) rheological heterogeneity allows part of the Antarctic Peninsula (i.e. the South Shetland Islands) to respond to rapid ice mass changes while other regions are incapable of responding to short-lived ice advances; or (3) the magnitude of neoglacial events within Marguerite Bay is too small to resolve through relative sea-level reconstructions. Although the application of reconstructing sea-level histories using OSL-dated raised beach deposits provides a better understanding of the timing and nature of relative sea-level change in Marguerite Bay, we highlight possible problems associated with using raised beaches as sea-level indices due to post-depositional reworking by storm waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arkhangelsk area lies in the region that was reached by the northeastern flank of the Scandinavian ice sheet during the last glaciation. Investigations of Late Pleistocene sediments show interglacial terrestrial and marine conditions with sea level up to 52 m above the present level. An unconformity in the stratigraphy suggests a hiatus representing the Early Valdaian (Weichselian) and the beginning of the Middle Valdaian. This unconformity could be related to a low base level and isostatic depression of the area north of Arkhangelsk, either caused by ice masses advancing from the Kara and Barents ice sheets and/or to Scandinavian ice over the Kola Peninsula. During Middle Valdaian, from c. 66 ka BP, until the advance of the Late Valdaian glacier, c. 17-16 ka BP, peat formation, and northward fluvial sedimentation occurred coexisting with permafrost conditions in a later phase. Before the glacier advance, the base level rose and thick vertical accumulations of fluvial sediments were formed. Associated with this glacier advance from the north-northwest, ice damming occurred. Fluvial drainage was opposite to the present drainage pattern and deposition appeared in glaciolacustrine ponds in the area outside the limit of the glaciation. After the deglaciation that started c. 15 ka BP, permafrost conditions and downwasting of buried stagnant glacier ice prevailed until at least 10.7 ka BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most current methods of reconstructing past sea levels within Antarctica rely on radiocarbon dating. However, radiocarbon dating is limited by the availability of material for dating and problems inherent with radiocarbon reservoirs in Antarctic marine systems. Here we report on the success of a new approach to dating raised beach deposits in Antarctica for the purpose of reconstructing past sea levels. This new approach is the use of optically stimulated luminescence (OSL) on quartz-grains obtained from the underside of cobbles within raised beaches and boulder pavements. We obtained eight OSL dates from three sites along the shores of Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula. These dates are internally consistent and fit well with previously published radiocarbon ages obtained from the same deposits. In addition, when the technique was applied to a modern beach, it resulted in an age of zero. Our results suggest that this method will provide a valuable tool in the reconstruction of past sea levels in Antarctica and other coarse-grained beach deposits across the globe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A morphotectonic study has been performed in the Pir Panjal Range (Southern Kashmir, Western Himalaya) to characterised the active tectonics. Along the Chenab River, we mapped 7 strath terraces at the hanging wall of the Medlicott Wadia Thrust, and dated 3 regional alluviation events using 3 methods (53 10Be samples, 12 OSL and 3 14C). The 3 methods are briefly presented and data are shown in a table. The three alluviation events correspond to the end of maximum monsoon phases.