54 resultados para Low back-related leg pain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The late Cenozoic history of eolian sedimentation in the eastern Indian Ocean was developed from samples recovered during drilling of Sites 752, 754, and 756. Temporal changes in the mass accumulation rate of eolian material reflect major climatic shifts in the southern African source region. A significant drop in dust mass flux values occurs near the end of the lower Oligocene. Younger sediments are characterized by a gradual reduction in dust accumulation rates until the middle Miocene after which values remain consistently low throughout the late Cenozoic, although a slight increase in eolian accumulation rate occurs near 2.5 Ma. This pattern of dust mass flux appears related to the supply of dust-sized particles in the source region and represents a shift in the climatic regime of southern Africa to increasingly more arid conditions throughout the late Cenozoic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The state of preservation of natural gas hydrate samples, recovered from 6 sites drilled during ODP Leg 204 at southern summit of Hydrate Ridge, Oregon Margin, has been investigated by X-ray diffraction (XRD) and cryo-scanning-electron-microscopy (cryo-SEM) techniques. A detailed characterization of the state of decomposition of gas hydrates is necessary since no pressurized autoclave tools were used for sampling and partial dissociation must have occurred during recovery prior to the quench and storage in liquid nitrogen. Samples from 16 distinct horizons have been investigated by synchrotron X-ray diffraction measurements at HASYLAB/ Hamburg. A full profile fitting analysis ("Rietveld method") of synchrotron XRD data provides quantitative phase determinations of the major sample constituents such as gas hydrate structure I (sI), hexagonal ice (Ih) and quartz. The ice content (Ih) in each sample is related to frozen water composed of both original existing pore water and the water from decomposed hydrates. Hydrate contents as measured by diffraction vary between 0 and 68 wt.% in the samples we measured. Samples with low hydrate content usually show micro-structural features in cryo-SEM ascribed to extensive decomposition. Comparing the appearance of hydrates at different scales, the grade of preservation seems to be primarily correlated with the contiguous volume of the original existing hydrate; the dissociation front appears to be indicated by micrometer-sized pores in a dense ice matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Petrography, major and trace elements, mineral chemistry, and Sr, Nd, and Pb isotopic ratios are reported for igneous rocks drilled on the northern flank of the North d'Entrecasteaux Ridge (NDR) during Ocean Drilling Program (ODP) Leg 134 Site 828. These rocks comprise a breccia unit beneath a middle Eocene foraminiferal ooze. Both geophysical characteristics and the variety of volcanic rocks found at the bottom of Holes 828A and 828B indicate that a very immature breccia or scree deposit was sampled. Basalts are moderately to highly altered, but primary textures are well preserved. Two groups with different magmatic affinities, unrelated to the stratigraphic height, have been distinguished. One group consists of aphyric to sparsely plagioclase + clinopyroxene-phyric basalts, characterized by high TiO2 (~2 wt%) and low Al2O3 (less than 15 wt%) contents, with flat MORB-normalized incompatible element patterns and LREE-depleted chondrite-normalized REE patterns. This group resembles N-MORB. The other group comprises moderately to highly olivine + plagioclase-phyric basalts with low TiO2 (<1 wt%) and high Al2O3 (usually >15 wt%) contents, and marked HFSE depletion and LFSE enrichment. Some lavas in this group are picritic, with relatively high modal olivine abundances, and MgO contents up to 15 wt%. Both the basalts and picritic basalts of this group reflect an influence by subduction-related processes, and have compositions transitional between MORB and IAT. Lavas with similar geochemical features have been reported from small back-arc basins such as the Mariana Trough, Lau Basin, Sulu Sea, and the North Fiji Basin and are referred to as back-arc basin basalts. However, regional tectonic considerations suggest that the spreading that produced these backarc basin basalts may have occurred in the forearc region of the southwest-facing island arc that existed in this region in the Eocene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mineralogical and geochemical analyses were performed on 40 ash layers of Pleistocene to late Miocene age, recovered during Leg 124 in the Celebes and Sulu Seas (Sites 767, 768, and 769). They provide information on alteration processes related to burial diagenesis. The zonal distribution of secondary volcanic products emphasizes a major diagenetic change, characterized by the complete replacement of volcanic glass by an authigenic smectite-phillipsite assemblage, in tephra layers dated at 3.5-4 Ma. This diagenetic "event" occurs simultaneously in the two basins, and, on the basis of isotopic data, under low-temperature conditions. It is independent of distinct sedimentation rates and related to a relative quiescence of on-land volcanic activity. This period suggests a more uniform paleooceanographic situation having tectonic significance, and probably reflects a kinetic and environmental control of diagenetic reactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objectives of this study are (1) to characterize the spatial and temporal variations in organic matter deposited in upwelling and related sediments (manifest in the palynoclast and organic-walled microplankton assemblages) and (2) to relate these variations to paleoenvironmental changes. A total of 40 samples from Holes 679D, 680B, 681B, 684B, 686B, and 687B were analyzed. Without exception, amorphogen dominates the palynoclast assemblages overwhelmingly. Influx of terrestrial particulate organic matter to the marine realm was extremely low. Levels of amorphogen swamp other palynoclast categories, and little significance can be attached to any variations observed. Microplankton dominate the palynomorph assemblages, with variable levels of subordinate foraminiferal test linings. Miospores are rare and are absent in most samples. Foraminiferal test linings are particularly abundant in the shallowest samples, which may reflect low surface-water paleotemperatures. Cysts of heterotrophic peridiniacean dinoflagellates (P-cysts) dominate the microplankton assemblages, with variable levels of cysts of autotrophic gonyaulacacean dinoflagellates (G-cysts). Samples dominated by P-cysts are derived largely from laminated, unbioturbated units deposited under the influence of strong upwelling. A lower abundance of P-cysts in some samples is restricted to unlaminated, bioturbated units deposited under oxygenated conditions. We conclude that the ratio of P-cysts to G-cysts is a useful indicator of variable upwelling strength. Detailed study of the variations in the microplankton assemblages offers one the greatest potential for palynological characteriztion and understanding of the upwelling system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogen isotope compositions have been measured on pore waters from sediments of Leg 129 sites in the Pigafetta and East Mariana basins (central western Pacific). Total water (pore + sorbed waters) contents and their dD have been analyzed for three samples that contain smectite but no zeolite so that sorbed water can be attributed to interlayer water. The H budget for pore and total waters implies that interlayer water is 20 per mil to 30 per mil depleted in D compared to pore water. Because the interlayer/total water molar ratio (0.25 to 0.5) in smectitic sediments is very high, interlayer water represents an important reservoir of D-depleted water in sediments. dD depth profiles for pore water at Sites 800 and 801 show breaks related to chert and radiolarite layers and are relatively vertical below. Above these chert units, pore waters are similar to modern seawater but below, they are between -10 per mil and -5.5 per mil. These values could represent little modified pre-Miocene seawater values, which were D-depleted because of the absence of polar caps, and were preserved from diffusive exchange with modern seawater by the relatively impermeable overlying chert layers. At Site 802, dD values of the pore waters show a decrease in the Miocene tuffs from 0 per mil values at the top to -8 per mil at 250 mbsf. Below, dD values are relatively uniform at about -8ë. Miocene tuffs are undergoing low water/rock alteration. A positive covariation of dD and Cl content of pore water in the tuffs suggests that the increase of dD values could result from secondary smectite formation. Low diffusive exchange coupled with D enrichment due to alteration of preglacial waters could explain the observed profile.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With this study, we investigate the mineralogical variations associated with the low-temperature (<100°C) alteration of normal tholeiitic pillow basalts varying in age from 0.8 to 3.5 Ma. Their alteration intensity varies systematically and is related to several factors, including (1) the aging of the igneous crust, (2) the increase of temperatures from the younger to the older sites, measured at the sediment/basement interface, (3) the local and regional variations in lithology and primary porosity, and (4) the degree of pillow fracturing. Fractures represent the most important pathways that allow significant penetration of fluids into the rock and are virtually the only factor controlling the alteration of the glassy rim and the early stages of pillow alteration. Three different alteration stages have been recognized: alteration of glassy margin, oxidizing alteration through fluid circulation in fracture systems, and reducing alteration through diffusion. All the observed mineralogical and chemical variations occurring during the early stages of alteration are interpreted as the result of the rock interaction with "normal," alkaline, and oxidizing seawater, along preferential pathways represented by the concentric and radial crack systems. The chemical composition of the fluid progressively evolves while moving into the basalt, leading to a reducing alteration stage, which is initially responsible for the precipitation of Fe-rich saponite and minor sulfides and subsequently for the widespread formation of carbonates. At the same time, the system evolved from being "water dominated" to being "rock dominated." No alteration effects in pillow basalts were observed that must have occurred at temperatures higher than those measured during Leg 168 at the basement/sediment interface (e.g., between 15° and 64°C).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leg 58 successfully recovered basalt at Sites 442, 443, and 444, in the Shikoku Basin, and at Site 446 in the Daito Basin. Only at Site 442 did penetration reach unequivocal oceanic layer 2; at the other sites, only off-axis sills and flows were sampled. Petrographic observations indicate that back-arc basalts from the Shikoku Basin, with the exception of the kaersutite-bearing upper sill at Site 444, are mineralogically similar to basalts being erupted at normal mid-ocean ridges. However, the Shikoku Basin basalts are commonly very vesicular, indicating a high volatile content in the magmas. Site 446 in the Daito Basin penetrated a succession of 23 sills which include both kaersutite-bearing and kaersutite-free basalt varieties. A total of 187 samples from the four sites has been analyzed for major and trace elements using X-ray-fluorescence techniques. Chemically, the basalts from Sites 442 and 443 and the lower sill of Site 444 are subalkaline tholeiites and resemble N-type ocean-ridge basalts found along the East Pacific Rise and at 22° N on the Mid-Atlantic Ridge (MAR), although they are not quite as depleted in certain hygromagmatophile (HYG) elements. They do not show any chemical affinities with island-arc tholeiites. The basalts from Site 446 and from the upper sill at Site 444 show alkaline and tholeiitic tendencies, and are enriched in the more-HYG elements; they chemically resemble enriched or E-type basalts and their differentiates found along sections of the MAR (e.g., 45°N) and on ocean islands (e.g., Iceland and the Azores). Most of the intra-site variation may be attributed to crystal settling within individual massive flows and sills, to high-level fractional crystallization in sub-ridge magma chambers, or, where there is evidence of a long period of magmatic quiescence between units, to batch partial melting. However, the basalts from Sites 442 and 443 and from the lower sill at Site 444 cannot easily be related to those from Site 446 and the upper sill at Site 444, and it is possible that the different basalt types were derived from chemically distinct mantle sources. From comparison of the Leg 58 data with those already available for other intra-oceanic back-arc basins, it appears that the mantle sources giving rise to back-arc-basin basalts are chemically as diverse as those for mid-ocean ridges. In addition, the high vesicularity of the Shikoku Basin basalts supports previous observations that the mantle source of back-arc-basin basalts may be contaminated by a hydrous component from the adjacent subduction zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetic polarity stratigraphies from ODP Leg 177 'high resolution' sites indicate Brunhes sedimentation rates in the 12-25 cm/kyr range, with a trend of decreasing sedimentation rates with increasing age. Magnetite is the principal remanence-carrying mineral. Downcore alteration of magnetite and authigenic growth of iron sulfides introduces a high coercivity diagenetic remanence carrier (pyrrhotite). The change in pore water sulfate with depth in the sediment tends to be in step with the decrease in magnetization intensity, indicating the link between sulfate reduction and magnetite dissolution. Shipboard pass-through magnetometer data are generally very noisy due to a combination of weak magnetization intensities, drilling-related core deformation, and the influence of authigenic iron sulfides. Post-cruise progressive demagnetization of discrete samples aids the magnetostratigraphic interpretation, as these measurements are less influenced by low magnetization intensities and drilling-related deformation. The magnetostratigraphic interpretations provide much-needed calibration for biostratigraphic events in the high latitude southern oceans. Apart from the ODP Hole 745B (Kerguelen Plateau), published Plio-Pleistocene magnetostratigraphies from ODP sites in the Southern Ocean are poorly constrained. For this reason, we compare interpolated ages of 11 radiolarian events and one diatom event that occur at Hole 745B and Leg 177 sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To date, work on the Great Bahama Bank's western, leeward margin has centred chiefly on seismic-scale expressions of carbonate sequences and systems tracts. However, periplatform, slope sediments also exhibit very well developed cyclicity on scales of decimetres to several metres. It is these small-scale, high-frequency cycles within the larger-scale facies successions of the Quaternary which form the main topic of this paper. Previous studies have shown that the small-scale cycles correlate to the orbitally forced, high-frequency sea-level changes. Therefore these cycles should indicate how sea level has affected the slope development and thus platform-margin evolution during this period. Through detailed, high-resolution sequence stratigraphy of the Great Bahama Bank's leeward margin, obtained via delta18O isotope and mineralogical (XRD) analyses, confined by U/Th dating and nannofossil bioevents, a greater understanding of the bedding geometries within the Pleistocene-Holocene seismic sequences and clues as to the nature of the slope development has been achieved. The high-resolution seismic profiles indicate that since the Plio-Pleistocene change in geometry, in which the Great Bahama Bank developed into a rimmed platform, continued steepening and subsequent progradation of the leeward margin has typified slope development during the Quaternary, which is described as an accretionary slope. However, on the basis of our observations we conclude that only the early to lower middle Pleistocene section (isotope stages 45-20) and the Holocene (isotope stage 1) of the leeward margin is accretionary. This indicates that a degree of erosion and/or by-passing has occurred on the leeward margin since the lower middle Pleistocene (isotope stage 19). During the first part of this period (isotope stages 19-12) erosion and/or by-passing occurred in the middle to lower slope regions and toe-of-slope. By the end of the upper middle to late Pleistocene phase (isotope stages 11-2) erosion also occurred on the upper slope. This erosion by currents at the toe-of-slope and oversteepening of the upper and middle slopes have led to back-cutting upslope and resulted in the progressive retreat of the toe-of-slope towards the platform to the east. However, the rise in sea level since the Last Glacial Maximum to its present-day level has allowed high productivity on the platform top during the Holocene and the deposition of a thick sediment wedge on the slope and sedimentation across the entire leeward flanks. This has led to the redevelopment of an accretionary slope and continued westward progradation of the Great Bahama Bank's western, leeward margin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During drilling in the Gulf of California, diagenetic carbonate rocks were recovered at 7 out of 8 sites. These are primarily dolomites which record 13C isotopic evidence of the incorporation of carbon derived from the decomposition of organic matter. In Hole 479, drilled to a sub-bottom depth of 440 meters on the Guaymas Slope, under a fertile upwelling belt, we recognized an excellent example of deep sea dolomitization in progress. This Quaternary section of organic-carbon- rich, low-carbonate, hemipelagic diatomaceous oozes contains numerous fine-grained, decimeter-thin, episodic beds of dolomite, which show sedimentologic, geochemical, and isotopic evidence of accretion by precipitation below 40 meters sub-bottom in zones of high alkalinity and low sulfate. The beds preserve original sedimentary structures. Carbon-13 varies from +3 to +14 per mil, indicating biogenic CO2 reservoirs related to active methanogenesis. In single beds, 18O values range outwardly from +5 to -7 per mil, reflecting increasing temperature with progressive accretion of dolomite with depth; the values parallel progressive trends in lithification, texture, mineralogy, and fossil preservation. We estimate slow accretion rates on the order of 0.1-0.7 mm/10**3 yr. with burial. Dolomitization does not proceed merely at the expense of nearby nannofossils. Ca and Mg ions must be derived from interstitial waters. The episodic appearance of beds in the sequence seems partly a reflection of latent climate signals. This process of deep sea dolomitization carries implications for hydrocarbon migration, as well as an interpretation of the presence of dolomite in other modern and ancient pelagic to hemipelagic sediment sequences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relatively fresh basement basaltic rocks cored at Sites 794 and 797 during ODP Legs 127 and 128 show compositional variations suggesting the following: (1) the aphyric rocks might be differentiated from compositional equivalents of the aphyric sample with the lowest FeO*/MgO (Sample 127-797C-12R-4, 35-37 cm); and (2) the plagioclase-phyric rocks (i.e., another constituent of the basement basaltic rocks from the sites) may be derivatives from the same parents; in this case, however, crystallized plagioclase was not effectively removed. Melting experiments were conducted for Sample 127-797C-12R-4, 35-37 cm, and the differentiation processes for the basement basaltic rocks were assessed. The high-pressure melting-phase relation can not account for the compositional variation of the aphyric rocks, suggesting that the variation was developed at relatively low pressure where olivine and plagioclase fractionation was followed by Ca-rich clinopyroxene fractionation. The density of Sample 127-797C-12R-4,35-37 cm, is comparable to that of plagioclase at some depth, but at still relatively low pressure, making it possible that the liquidus plagioclase was retained in the successive liquids to produce the plagioclase-phyric rocks. According to backtrack calculation assuming the olivine maximum fractionation, Sample 127-797C-12R-4, 35-37 cm, was differentiated from primary picritic high-Al basalt magma. The estimated primary magma composition was experimentally proved to coexist with harzburgite mantle at about 14 kbar, suggesting relatively shallow production (approximately 40-50 km below surface) of the rifting-related primary magma.