110 resultados para Logs steaming
Resumo:
In the northern McMurdo Sound (Ross Sea, Antarctica), the CRP-2/2A drillhole targeted the western margin of the Victoria Land Basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs. Well logging of CRP-2/2A has provided a complete and comprehensive dataset of in situ geophysical measurements. This paper describes the evaluation and interpretation of the downhole logging data using multivariate statistical methods. Two major types of multivariate statistical methods were each yielding a different perspective: (1) Factor analysis was used as an objective tool for classification of the drilled sequence based on physical and chemical properties. The factor logs are mirroring the basic geological controls (i.e., grain size, porosity, clay mineralogy) behind the measured geophysical properties, thereby making them easier to interpret geologically. (2) Cluster analysis of the logs groups similar downhole geophysical properties into one cluster, delineating individual logging or sedimentological units. These objectively and independently defined units, or statistical electrofacies, are helpful in differentiating lithological and sedimentological characterisations (e.g. grain size, provenance). The multivariate statistical methods of factor and cluster analysis proved to be powerful tools for fast, reliable, and objective characterisation of downhole geophysical properties at CRP-2/2A, resulting in interpretations which are consistent with sedimentological findings.
Resumo:
During the 2007-2008 austral spring season, the ANDRILL (Antarctic Drilling project) Southern McMurdo Sound Project recovered an 1138-m-long core, representing the last 20 m.y. of glacial history. An extensive downhole logging program was successfully carried out. Due to drill hole conditions, logs were collected in several passes from the total depth at 1138.54 m below seafloor (mbsf) to 230 mbsf. After data correction, several statistical methods, such as factor analysis, cluster analysis, box-and-whisker diagrams, and cross-plots, were applied. The aim of these analyses was to use detailed interpretation of the downhole logs to obtain a description of the lithologies and their specific physical properties that is independent of the core descriptions. The sediments were grouped into the three main facies, diamictite, mudstone and/or siltstone, and sandstone, and the physical properties of each were determined. Notable findings include the high natural radioactivity values in sandstone and the high and low magnetic susceptibility values in mudstone and/or siltstone and in sandstone. A modified lithology cluster column was produced on the basis of the downhole logs and statistical analyses. It was possible to use the uranium content in the downhole logs to determine hiatuses and thus more accurately place the estimated hiatuses. Using analyses from current literature (geochemistry, clasts, and clay minerals) in combination with the downhole logs (cluster analysis), the depths 225 mbsf, 650 mbsf, 775 mbsf, and 900 mbsf were identified as boundaries of change in sediment composition, provenance, and/or environmental conditions. The main use of log interpretation is the exact definition of lithological boundaries and the modification of the paleoenvironmental interpretation.
Resumo:
A suite of petrophysical properties - velocity, resistivity, bulk density, porosity, and matrix density - was measured on 88 core plugs from the CRP-3 drillhole. Core-plug bulk densities were used to recalibrate both whole-core and downhole bulk density logs. Core-plug measurements of matrix density permit conversion of the whole-core and downhole bulk density logs to porosity. Both velocity and formation factor (a normalized measure of resistivity) are strongly correlated with porosity. The velocity/porosity pattern is similar to that for the lower part of CRP-2A and is consistent with the empirical relationship for sandstones. Core-plug and whole-core measurements of P-wave velocity at atmospheric pressure exhibit excellent agreement. Measurements of velocity as a function of pressure indicate a significantly higher velocity sensitivity to pressure than has been observed at CRP-1 and CRP-2A; rebound or presence of microcracks at CRP-3 may be responsible. The percentage difference between velocities at in situ pressures and atmospheric pressures increases downhole from 0% at the seafloor to 9% at the bottom. This pattern can be used to correct whole-core velocity data, measured at atmospheric pressure, to in situ velocities for depth-to-time conversion and associated comparison to the seismic profile across the drillsite
Resumo:
Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.
Resumo:
The purpose of this note is to present results of grain size analyses from 118 samples of the CRP-2/2A core using sieve and Sedigraph techniques. The samples were selected to represent the range of facies encountered, and tend to become more widely spaced with depth. Fifteen came from the upper 27 m of Quaternary and Pliocene sediments, 62 from the early Miocene-late Oligocene strata (27 to 307 mbsf), and 41 from the early Oligocene strata beneath (307 to 624 mbsf). The results are intended to provide reference data for lithological descriptions in the core logs (Cape Roberts Science Team, 1999), and to help with facies interpretation. The analytical technique used for determining size frequency of the sand fraction in our samples (sieving) is simple, physical and widely practised for over a century. Thus it provides a useful reference point for analyses produced by other faster and more sophisticated techniques, such as the Malvern laser particle size analysis system (Woolfe et al., 2000), and estimates derived from measurements taken with down-hole logging tools (Bücker, pers. com., 1999).
Resumo:
Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.
Resumo:
We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40 cm thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630-kyear record of climate response to orbital forcing with dominant 21- and 41-kyear cycles for carbonate and magnetic susceptibility, respectively, pointing to teleconnections of low-latitude monsoonal forcing on the precession band to high-latitude obliquity forcing. Upper slope sites 115, 124, and 126 contain a record of the response to high-frequency climate change in the Dansgaard-Oeschger bands during the last glacial cycle with shared frequencies between 0.75 and 2.5 kyear. Correlation of highs in Bengal Fan physical properties to lows in the d18O record of the GISP2 ice-core suggests that times of greater sediment transport energy in the Bay of Bengal are associated with cooler air temperatures over Greenland. Teleconnections were probably established through moisture and other greenhouse-gas forcing that could have been initiated by instabilities in the methane hydrate reservoir in the oceans.
Resumo:
Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
Resumo:
During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis-irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P*m), photosynthetic efficiency (alpha*), photoacclimation (Ek), and photoinhibition (beta*). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in alpha* and P*m, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 µm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow ''shade-acclimated'' range.
Resumo:
Samples of chert, porcellanite, and chalk/limestone from Cretaceous chert-bearing sections recovered during Leg 198 were studied to elucidate the nature and origin of chert color zonations with depth/age. Sedimentary structures, trace fossils, compactional features, sediment composition, texture, geochemistry, and diagenetic history were compared among lithologies. Trends in major and minor element composition were determined. Whereas geochemical analyses demonstrate systematic elemental differences among the different lithologies, there are less distinct patterns in composition for the colored cherts. The color of the chert appears to be related primarily to the amount of silica and secondarily to the proportion of other components. Red cherts are almost pure silica with only minor impurities. This may allow pigmentation from fine Fe oxides to dominate the color. These red cherts are from places where geophysical logs indicate that chert is the dominant rock type of the section. These red chert intervals cannot be unequivocally distinguished from surrounding chert-bearing lithologies in terms of sedimentary structures.
Resumo:
The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.
Resumo:
Ocean Drilling Program (ODP) Sites 832 and 833 were drilled in the intra-arc North Aoba Basin of the New Hebrides Island Arc (Vanuatu). High volcanic influxes in the intra-arc basin sediment resulting from erosion of volcanic rocks from nearby islands and from volcanic activity are associated with characteristic magnetic signals. The high magnetic susceptibility in the sediment (varying on average from 0.005 to more than 0.03 SI) is one of the most characteristic physical properties of this sedimentary depositional environment because of the high concentration of magnetites in redeposited ash flows and in coarse-grained turbidites. Susceptibility data correlate well with the high resolution electrical resistivity logs recorded by the formation microscanner (FMS) tool. Unlike the standard geophysical logs, which have low vertical resolution and therefore smooth the record of the sedimentary process, the FMS and whole-core susceptibility data provide a clearer picture of turbiditic sediment deposition. Measurements of Curie temperatures and low-temperature susceptibility behavior indicate that the principal magnetic minerals in ash beds, silt, and volcanic sandstone are Ti-poor titanomagnetite, whereas Ti-rich titanomagnetites are found in the intrusive sills at the bottom of Site 833. Apart from an increase in the concentration of magnetite in the sandstone layer, acquisition of isothermal and anhysteretic remanences does not show significant differences between sandstone and clayey silts. The determination of the anisotropy of magnetic susceptibility (AMS) in more than 400 samples show that clayey siltstone have a magnetic anisotropy up to 15%, whereas the AMS is much reduced in sandstone layers. The magnetic susceptibility fabric is dominated by the foliation plane, which is coplanar to the bedding plane. Reorientations of the samples using characteristic remanent magnetizations indicate that the bedding planes dip about 10° toward the east, in agreement with results from FMS images. Basaltic sills drilled at Site 833 have high magnetic susceptibilities (0.05 to 0.1 SI) and strong remanent magnetizations. Magnetic field anomalies up to 50 µT were measured in the sills by the general purpose inclinometer tool (GPIT). The direction of the in-situ magnetic anomaly vectors, calculated from the GPIT, is oriented toward the southeast with shallow inclinations which suggests that the sill intruded during a reversed polarity period.
Resumo:
Deep Sea Drilling Project (DSDP) studies at Site 570 on the landward slope of the Middle America Trench off Guatemala allow for the first time a quantitative estimate of the methane hydrate content in the massive mudstones deposited there. Drilling across the Guatemalan transect on DSDP Legs 67 and 84 has resulted in the greatest number of visual observations of gas hydrate in any marine area. At Site 570, a 1.5-m-long section of massive methane hydrate was unexpectedly cored in an area where none of the usual signs of gas hydrate in seismic records were present. The sediment section is similar to that recovered at the other eight sites off Guatemala, but drilling at Site 570 may have penetrated through a fault zone that provided the space for accumulation of massive gas hydrate. The methane hydrate was analyzed using the following well logs: density, sonic, resistivity, gamma-ray, caliper, neutron porosity, and temperature. The density, sonic, and resistivity logs define a 15-m-thick hydrated zone within which a 4-m-thick nearly pure hydrate section is contained. The methane gas content ranges from 240 m**3 to 1400 m**3 per m**2 of lateral extent; and if the body extends a square kilometer, its total volume of stored gas could be from 240*10**6m**3 to 1400*10**6m**3. Because the acoustic impedance of hydrate calculated from the sonic and density logs shows no anomalous values, the shape and extent of the hydrate body cannot be defined in seismic records. Thus the body is theoretically nonreflective in contrast to the base of the hydrate reflection. The base of the gas hydrate reflection is presumed to be the result of the velocity contrast between sediment containing gas hydrate and sediment containing free gas.
Resumo:
We used well logs, in some cases combined with shipboard physical properties measurements to make more complete profiles and to correlate between sites on the Ontong Java Plateau. By comparing sediment bulk density, velocity, and resistivity logs from adjacent holes at the same site, we showed that even subtle features of the well logs are reproducible and are caused by variations in sedimentation. With only minor amounts of biostratigraphic information, we could readily correlate these sedimentary features across the entire top of the Ontong Java Plateau, demonstrating that for most of the Neogene the top of the plateau is a single sedimentary province. We found it more difficult, but still possible, to correlate in detail sites from the top of the plateau to those drilled on the flanks. The pattern of sedimentation rate variation down the flank of the plateau cannot be interpreted as simply controlled by dissolution. Site 805, in particular, oscillates between accumulating sediment at roughly the same rate as cores on top of the Ontong Java Plateau, and accumulating sediment as slowly as Site 803, 200 m deeper in the water column. These oscillations do not match earlier reconstructions of central Pacific carbonate compensation depth variations.
Resumo:
Abstract: Ocean Drilling Program Sites 1001A (Caribbean Sea) and 1050C (western North Atlantic) display obliquity and precession cycles throughout polarity zone C27 of the late Danian stage (earliest Cenozoic time). Sliding-window spectra analysis and direct cycle counting on downhole logs and high-resolution Fe variations at both sites yield the equivalent of 35-36 obliquity cycles. This cycle-tuned duration for polarity chron C27 of 1.45 Ma (applying a modern mean obliquity period of 40.4 ka) is consistent with trends from astronomical tuning of early Danian polarity chron C29 and 40Ar/39Ar age calibration of the Campanian-Maastrichtian magnetic polarity time scale. The cycle-tuned Danian stage (sensu Berggren et al. 1995, in SEPM Special Publications, 54, 129-212) spans 3.65 Ma (65.5-61.85 Ma). Spreading rates on a reference South Atlantic synthetic profile display progressive slowing during the Maastrichtian to Danian stages, then remained relatively constant through late Palaeocene and early Eocene time.