20 resultados para Limnology--Lake, Crawford.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferromanganese crusts were sampled from the surface of a stone collected at a depth of 20 m in the northern part of Lake Biwa, Japan. These samples were analysed for 37 elements by neutron activation, X-ray fluorescence, and ICP-AE. The crusts were found to be enriched with Ba, P, B, As, and sometimes with Co, Ni, Cu and Sb. The elements were classified into 4 groups based on the varieties of host minerals (Fe-oxides, Mn-oxides or allochthonous materials) in which they were incorporated : elements mainly associated with 1) Mn-oxides : Ba, Ni, Cs, Sr and Co ; 2) Fe-oxides : P, B and As; 3) allochthonous materials : Na, K, Rb, Al, Ti, Sc, Hf and Th ; and 4) Mn-oxides plus allochthonous materials : rare earth elements and major heavy metals. The elemental compositions in the Lake Biwa concretions, including the crusts and Mn-deposits studied previously by these authors, were compared with those in other freshwater and oceanic concretions. As a result, the concentrations of rare earth elements and major heavy metals were found to be much lower, whereas those of B, P and As were higher in the Lake Biwa than in the oceanic concretions. These differences could be well explained in terms of the effects of sea salt, growth rates of the concretions, and pH of the formation environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radok Lake in Amery Oasis, East Antarctica, has a water depth of ca. 360 m, making it the deepest non-subglacial lake in Antarctica. Limnological analyses revealed that the lake had, despite a 3 m thick ice cover, a completely mixed water column during austral summer 2001/2002. High oxygen contents, low ion concentrations, and lack of planktonic diatoms throughout the water column indicate that Radok Lake is ultra-oligotrophic today.The late glacial and postglacial lake history is documented in a succession of glacial, glaciolimnic, and limnic sediments at different locations in the lake basin. The sediments record regional differences and past changes in allochthonous sediment supply and lake productivity. However, the lack of age control on these changes, due to extensive sediment redeposition and the lack of applicable dating methods, excluded Radok Lake sediments for advanced paleoenvironmental reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferromanganese concretions from Grand Lake and Ship Harbour Lake in Nova Scotia and Mosque Lake in Ontario are most common in water 0.5 to 2 m deep. X-ray diffraction studies show the ferromanganese portions of the concretions to he amorphous. Petrographic and electron probe studies of the ferromanganese material reveal chemical banding of iron and manganese. Bulk chemical analyses indicate that the Fe:Mn ratios of concretions from different sites within a single lake are similar, whereas concretions from different lakes have characteristic Fe:Mn ratios. Trace element concs are different in different lakes and are generally several orders of magnitude less than those of oceanic nodules.