30 resultados para Light absorption technique


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on combined microsensor measurements of irradiance, temperature and O2, we compared light energy budgets in photosynthetic microbial mats, with a special focus on the efficiency of light energy conservation by photosynthesis. The euphotic zones in the three studied mats differed in their phototrophic community structure, pigment concentrations and thickness. In all mats, < 1% of the absorbed light energy was conserved via photosynthesis at high incident irradiance, while the rest was dissipated as heat. Under light-limiting conditions, the photosynthetic efficiency reached a maximum, which varied among the studied mats between 4.5% and 16.2% and was significantly lower than the theoretical maximum of 27.7%. The maximum efficiency correlated linearly with the light attenuation coefficient and photopigment concentration in the euphotic zone. Higher photosynthetic efficiency was found in mats with a thinner and more densely populated euphotic zone. Microbial mats exhibit a lower photosynthetic efficiency compared with ecosystems with a more open canopy-like organization of photosynthetic elements, where light propagation is not hindered to the same extent by photosynthetically inactive components; such components contributed about 40-80% to light absorption in the investigated microbial mats, which is in a similar range as in oceanic planktonic systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new electrothermal atomizer for use in direct determination of Ag, Bi, In, and Tl in marine, riverine, and aeolian particulate matter on membrane filters is described. A sample capsule and atomization cell are heated separately. That is why it is possible to separate and optimize decomposition of a sample, vaporization of elements and atomization of their vapors. Noise reduction and design, which localizes the vapors in a light absorption zone, decrease detection limits of these four elements by factor of at least 3 to 10. Some analytical results are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Twenty-six core samples from Leg 64, Holes 474, 474A, 477, 478, 479, and 481A in the Gulf of California, were provided by the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Advisory Panel on Organic Geochemistry for analysis. The high heat flow characteristic of the basin provides an opportunity to study the effect of temperature on the diagenesis of organic matter. The contents and carbon isotope compositions of the organic matter and bitumen fractions of different polarity, isoprenoid and normal alkane distributions, and the nature of tetrapyrrole pigments were studied. Relative contents of hydrocarbons and bitumens depend on the thermal history of the deposits. Among other criteria, the nature and content of tetrapyrrole pigments appear to be most sensitive to thermal stress. Whereas only chlorins are present in the immature samples, porphyrins, including VO-porphyrins, appear in the thermally altered deposits, despite the shallow burial depth. Alkane distributions in thermally changed samples are characterized by low values of phytane to 2-C18 ratios and an odd/even carbon preference index close to unity. The thermally altered samples show unusual carbon isotope distributions of the bitumen fractions. The data also provide some evidence concerning the source of the organic matter and the degree of diagenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 µatm) and low, current (390 µatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parameters in the photosynthesis-irradiance (P-E) relationship of phytoplankton were used to calculate daily production at weekly to bi-weekly intervals for 20 years at 6 stations on the Rhode River, Maryland (USA). The objectives of this work were to determine the patterns and controls on the P-E parameters and primary production of phytoplankton in a shallow eutrophic estuary. Additional measurements that are components of calculated daily rates of primary productivity are given: the light-saturation irradiance, photoperiod, maximal noon incident irradiance, optical depth, dimensionless depth integrals, and a correction for spectral selectivity of light absorption. P-E parameters and chlorophyll a concentrations were given in a related dataset, Gallegos (2012, doi:10.1594/PANGAEA.816494).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We measured light absorption in 42 marine snow, sea ice, seawater, brine, and frost flower samples collected during the OASIS field campaign between February 27 and April 15, 2009. Samples represented multiple sites between landfast ice and open pack ice in coastal areas approximately 5 km west of Barrow, Alaska. The chromophores that are most commonly measured in snow, H2O2, NO3-, and NO2-, on average account for less than 1% of sunlight absorption in our samples. Instead, light absorption is dominated by unidentified "residual" species, likely organic compounds. Light absorption coefficients for the frost flowers on first-year sea ice are, on average, 40 times larger than values for terrestrial snow samples at Barrow, suggesting very large rates of photochemical reactions in frost flowers. For our marine samples the calculated rates of sunlight absorption and OH production from known chromophores are (0.1-1.4) x 10**14 (photons/cm**3/s) and (5-70) x 10**-12 (mol/L/s), respectively. Our residual spectra are similar to spectra of marine chromophoric dissolved organic matter (CDOM), suggesting that CDOM is the dominant chromophore in our samples. Based on our light absorption measurements we estimate dissolved organic carbon (DOC) concentrations in Barrow seawater and frost flowers as approximately 130 and 360 µM C, respectively. We expect that CDOM is a major source of OH in our marine samples, and it is likely to have other significant photochemistry as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors-including pCO2-significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated seawater pCO2, and in turn ocean acidification (OA), is now widely acknowledged to reduce calcification and growth of reef building corals. As with other environmental factors (e.g., temperature and nutrients), light availability fundamentally regulates calcification and is predicted to change for future reef environments alongside elevated pCO2 via altered physical processes (e.g., sea level rise and turbidity); however, any potential role of light in regulating the OA-induced reduction of calcification is still unknown. We employed a multifactorial growth experiment to determine how light intensity and pCO2 together modify calcification for model coral species from two key genera, Acropora horrida and Porites cylindrica, occupying similar ecological niches but with different physiologies. We show that elevated pCO2 (OA)-induced losses of calcification in the light (G L) but not darkness (G D) were greatest under low-light growth conditions, in particular for A. horrida. High-light growth conditions therefore dampened the impact of OA upon G L but not G D. Gross photosynthesis (P G) responded in a reciprocal manner to G L suggesting OA-relieved pCO2 limitation of P G under high-light growth conditions to effectively enhance G L. A multivariate analysis of past OA experiments was used to evaluate whether our test species responses were more widely applicable across their respective genera. Indeed, the light intensity for growth was identified as a significant factor influencing the OA-induced decline of calcification for species of Acropora but not Porites. Whereas low-light conditions can provide a refuge for hard corals from thermal and light stress, our study suggests that lower light availability will potentially increase the susceptibility of key coral species to OA.