21 resultados para Lamellar


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2 enriched seawater for between 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed-lamellar layer, and Type III, where crossed-lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 d in undersaturated condition (Ohm ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new genus Abyssogena is established for A. phaseoliformis (Métivier, Okutani & Ohta, 1986) and A. kaikoi (Okutani & Métivier, 1986), which were previously assigned to the genus Calyptogena Dall, 1891, and also for two new species, A. southwardae and A. novacula. The most characteristic features of Abyssogena are an elongate shell up to about 280 mm in length; a pallial line starting from the ventral margin of the anterior adductor scar; secondary pallial attachment scars developed dorsal to the pallial line; radially arranged hinge teeth with a reduced anterior cardinal tooth in the right valve; and presence of an inner ctenidial demibranch only. Abyssogena occurs in deep water from 2,985 to 6,400 m and is distributed in the Pacific and Atlantic Oceans at cold seeps along continental margins and hydrothermal vents at mid-oceanic ridges. Some species have a remarkably wide geographic distribution; A. southwardae is present throughout the Atlantic and A. phaseoliformis is present in Japan, Kuril-Kamchatka, as well as Aleutian Trenches. No fossils of Abyssogena are known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jurassic (hemi)pelagic continental margin deposits drilled at Hole 547B, off the Moroccan coast, reveal striking Tethyan affinity. Analogies concern not only types and gross vertical evolution of facies, but also composition and textures of the fine sediment and the pattern of diagenetic alteration. In this context, the occurrence of the nanno-organism Schizosphaerella Deflandre and Dangeard (sometimes as a conspicuous portion of the fine-grained carbonate fraction) is of particular interest. Schizosphaerella, an incertae sedis taxon, has been widely recorded as a sediment contributor from Tethyan Jurassic deeper-water carbonate facies exposed on land. Because of its extremely long range (Hettangian to early Kimmeridgian), the genus Schizosphaerella (two species currently described, S. punctulata Deflandre and Dangeard and S. astrea Moshkovitz) is obviously not of great biostratigraphic interest. However, it is of interest in sedimentology and petrology. Specifically, Schizosphaerella was often the only component of the initial fine-grained fraction of a sediment that was able to resist diagenetic obliteration. However, alteration of the original skeletal structure did occur to various degrees. Crystal habit and mineralogy of the fundamental skeletal elements, as well as their mode of mutual arrangement in the test wall with the implied high initial porosity of the skeleton (60-70%), appear to be responsible for this outstanding resistance. Moreover, the ability to concentrate within and, in the case of the species S. punctulata, around the skeleton, large amounts of diagenetic calcite also contributed to the resistance. In both species of Schizosphaerella, occlusion of the original skeletal void space during diagenesis appears to have proceeded in an analogous manner, with an initial slight uniform syntaxial enlargement of the basic lamellar skeletal crystallites followed, upon mutual impingement, by uneven accretion of overgrowth cement in the remaining skeletal voids. However, distinctive fabrics are evident according to the different primary test wall architecture. In S. punctulata, intraskeletal cementation is usually followed by the growth of a radially structured crust of bladed to fibrous calcite around the valves. These crusts are interpreted as a product of aggrading neomorphism, associated with mineralogic stabilization of the original, presumably polyphase, sediment. Data from Hole 547B, along with inferences, drawn from the fabric relationships, suggest that the crusts formed and (inferentially) mineralogic stabilization occurred at a relatively early time in the diagenetic history in the shallow burial realm. An enhanced rate of lithification at relatively shallow burial depths and thus the chance for neomorphism to significantly influence the textural evolution of the buried sediment may be related to a lower Mg/Ca concentration ratio in the oceanic system and, hence, in marine pore waters in pre-Late Jurassic times.