24 resultados para Keller, Laurent: Queen number and sociality in insects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminifera from 24 DSDP/ODP sites were investigated to assess their global horizontal and vertical distribution in the deep-sea environment at the end of the Cretaceous period. The samples analyzed are from the late Maastrichtian and within the planktic foraminiferal Abathomphus mayaroensis Zone from a wide range of oceans and paleolatitudes, including the low-latitude Sites 10 and 384 (Atlantic Ocean), 47, 171, 305, and 465 (Pacific Ocean), the mid-latitude Sites 20, 111, 356, 363, 516, 525, 527, 548, and 605 (Atlantic Ocean), 216, 217, and 758 (Indian Ocean), and the high-latitude Sites 208 (Pacific Ocean), 689,698,700,738 and 750 (Southern Ocean). Correspondence analysis, based on the 75 most common taxa, shows a clear biogeographic trend along the first correspondence axis by arranging the sites in paleolatitudinal order. The assemblages from the Tethyan Realm (i.e., low latitudes) are marked by abundant heavily calcified buliminids (such as Bulimina incisa, B. trinitatensis, B. velascoensis, and Reussella szajnochae) and Aragonia spp., whereas high-latitude faunas are characterized by abundant Alabamina creta, Gyroidinoides quadratus, and Pullenia coryelli. The results indicate that the faunas at low and high latitudes, respectively, were influenced by quite different environmental conditions. This is based on the much higher abundance of infaunal morphotypes at low and mid latitudes compared to high latitudes, suggesting that the biogeographic trend found in the data set coincides with the trophic regime at the various sites. The results also provide support for the hypothesis that postulates two simultaneous sources and mechanisms for deep-water formation during the Late Cretaceous, including warm, saline deep water produced by evaporation at low (equatorial) latitudes in contrast to the formation of cold deep waters at high (southern) latitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Hole 923A, located on the western flank of the Mid-Atlantic Ridge south of the Kane Fracture Zone, recovered primitive gabbros that have mineral trace element compositions inconsistent with growth from a single parental melt. Plagioclase crystals commonly show embayed anorthitic cores overgrown by more albitic rims. Ion probe analyses of plagioclase cores and rims show consistent differences in trace element ratios, indicating variation in the trace element characteristics of their respective parental melts. This requires the existence of at least two distinct melt compositions within the crust during the generation of these gabbros. Melt compositions calculated to be parental to plagioclase cores are depleted in light rare earth elements, but enriched in yttrium, compared to basalts from this region of the Mid-Atlantic Ridge, which are normal mid-ocean ridge basalt (N-MORB). Clinopyroxene trace element compositions are similar to those predicted to be in equilibrium with N-MORB. However, primitive clinopyroxene crystals are much more magnesian than those produced in one-atmosphere experiments on N-MORB, suggesting that the major element composition of the melt was unlike N-MORB. These data require that the diverse array of melt compositions generated within the mantle beneath mid-ocean ridges are not always fully homogenised during melt extraction from the mantle and that the final stage of mixing can occur efficiently within crustal magma chambers. This has implications for the process of melt extraction from the mantle and the liquid line of descent of MORB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the role of microzooplankton (sensu latto, grazers <500 µm) in determining the fate of phytoplankton production (PP) along a glacier-to-open sea transect in the Greenland subarctic fjord, Godthabfjord. Based on the distribution of size fractionated chlorophyll a (chl a) concentrations we established 4 zones: (1) Fyllas Bank, characterized by deep chl a maxima (ca. 30 to 40 m) consisting of large cells, (2) the mouth and main branch of the fjord, where phytoplankton was relatively homogeneously distributed in the upper 30 m layer, (3) inner waters influenced by glacial melt water and upwelling, with high chl a concentrations (up to 12 µg/l) in the >10 µm fraction within a narrow (2 m) subsurface layer, and (4) the Kapisigdlit branch of the fjord, ice-free, and characterized with a thick and deep chl a maximum layer. Overall, microzooplankton grazing impact on primary production was variable and seldom significant in the Fyllas Bank and mouth of the fjord, quite intensive (up to >100% potential PP consumed daily) in the middle part of the main and Kapisigdlit branches of the fjord, and rather low and unable to control the fast growing phytoplankton population inhabiting the nutrient rich waters in the upwelling area in the vicinity of the glacier. Most of the grazing impact was on the <10 µm phytoplankton fraction, and the major grazers of the system seem to be >20 µm microzooplankton, as deducted from additional dilution experiments removing this size fraction. Overall, little or no export of phytoplankton out of the fjord to the Fyllas Bank can be determined from our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel long-chain 3,4-dialkylthiophenes (C36-C54) was identified in a number of sediments ranging from Pleistocene to Cretaceous. The identifications were based on mass spectral characterisation, desulphurisation and mass spectral data of synthesised model compounds. These organic sulphur compounds are probably formed by sulphur incorporation into mid-chain dimethylalkadienes with two methylenic double bonds. These putative precursor lipids are unprecedented and may be considered rather unusual. The distribution of 3,4-dialkylthiophenes in sediments varies considerably with the depositional palaeoenvironment, indicating that these compounds have a potential as molecular markers reflecting changes in palaeoenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.