542 resultados para Isopoda.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic-pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind./m**3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5-2.3 mg Chl-a/m**3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind./m**2) and wet biomass (<0.2 g/m**2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.