92 resultados para Ionization of gases.
Resumo:
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.
Resumo:
Isotopic-geochemical study revealed presence of mantle He (3He/4He up to 223x10**-8) in gases from mud volcanoes of Eastern Georgia. This fact confirms that the Middle Kura basin fill encloses an intrusive body previously distinguished from geophysical data. Wide variations of carbon isotopic composition d13C in CH4 and CO2 and chemical composition of gas and water at temporally constant 3He/4He ratio indicate their relation with crustal processes. Unusual direct correlations of 3He/4He ratio with concentrations of He and CH4 and 40Ar/36Ar ratio can be explained by generation of gas in the Cenozoic sequence of the Middle Kura basin.
Resumo:
We have measured the 3He/4He and 4He/20Ne ratios and chemical compositions of gases exsolved from deep-sea sediments at two sites (798 and 799) in the Japan Sea. The 3He/4He and 4He/20Ne ratios vary from 0.642 Ratm (where Ratm is the atmospheric 3He/4He ratio of 1.393*10**-6) to 0.840 Ratm, and from 0.41 to 4.5, respectively. Helium in the samples can be explained by the mixing between atmospheric helium dissolved in bottom water of the Japan Sea and crustal helium in the sediment. The sedimentary helium is enriched in mantle-derived 3He compared with those from the Japan Trench and the Nankai Trough. This suggests that the basement of the Japan Sea has relatively large remnants of mantle-derived helium compared with that of the Pacific. Major chemical compositions of the samples are methane and nitrogen. There is a positive correlation between methane content and helium content corrected for air component. Based on the 3He/4He-Sum C/3He diagram, the major part of methane can be attributed to crustal and/or organic origin.
Resumo:
We have measured the 3He/4He and 20Ne/4He ratios of gases dissolved in the pore water in sediments at two sites in the Nankai Trough (Site 583) and the Japan Trench (Site 584). The 3He/4He and 20Ne/4He ratios vary from 0.215 * 10**-6 to 1.23 * 10**-6 and from 50 * 10**-3 to 2700 * 10**-3, respectively. These values can be explained by mixing two components, one from the atmosphere and one with a 3He/4He ratio of (0.2 to 0.3) * 10**-6. The latter component may be derived from the ocean crust near the subduction zone.
Resumo:
In an investigation of gas hydrates in deep ocean sediments, gas samples from Deep Sea Drilling Project Site 533 on the Blake Outer Ridge in the northwest Atlantic were obtained for molecular and isotopic analyses. Gas samples were collected from the first successful deployment of a pressure core barrel (PCB) in a hydrate region. The pressure decline curves from two of the four PCB retrievals at in situ pressures suggested the presence of small amounts of gas hydrates. Compositional and isotopic measurements of gases from several points along the pressure decline curve indicated that (1) biogenic methane (d13C = -68 per mil; C1/C2 = 5000) was the dominant gas (>90%); (2) little fractionation in the C1/C2 ratio or the C carbon isotopic composition occurred as gas hydrates decomposed during pressure decline experiments; (3) the percent of C3, i-C4, and CO2 degassed increased as the pressure declined, indicating that these molecules may help stabilize the hydrate structure; (4) excess nitrogen was present during initial degassing; and (5) C1/C2 ratios and isotopic ratios of C gases were similar to those obtained from conventional core sampling. The PCB gas also contained trace amounts of saturated, acyclic, cyclic, and aromatic C5-C14 hydrocarbons, as well as alkenes and tetrahydrothiophenes. Gas from a decomposed specimen of gas hydrate had similar molecular and isotopic ratios to the PCB gas (d13C of -68 per mil for methane and a C1/C2 ratio of about 6000). Regular trends in the d13C of methane (about -95 to -60 per mil) and C1/C2 ratios (about 25000 to 2000) were observed with depth. Capillary gas chromatography (GC) and total scanning fluorescence measurements of extracted organic material were characteristic of hydrocarbons dominated by a marine source, though significant amounts of perylene were also present.