19 resultados para Intercropping epochs
Resumo:
The Eocene and Oligocene epochs (55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records (Zachos et al., 2001, doi:10.1126/science.1059412; Lear et al., 2000, doi:10.1126/science.287.5451.269; Coxall et al., 2005, doi:10.1038/nature03135; Pekar et al., 2005; doi:10.1130/B25486.1; Strand et al., 2003, doi:10.1016/S0031-0182(03)00396-1) supported by climate modelling (DeConto and Pollard, 2003, doi:10.1038/nature01290) indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy (Coxall et al., 2005, doi:10.1038/nature03135; Tripati et al., 2005, doi:10.1038/nature03874; Wolf-Welling et al., 1996, doi:10.2973/odp.proc.sr.151.139.1996; Moran et al., 2006, doi:10.1038/nature04800). Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented (Winkler et al., 2002, doi:10.1007/s005310100199), at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.
Resumo:
It has been found that oxygen-isotope and paleotemperature curves based on types of planktonic foraminiferal thanatocenoses in three sediment cores, from the tropical, southern temperate, and southern glacial zones of the Indian Ocean can be readily correlated with each other. The sediment cores revealed three epochs of cold climate during the past 700 ky; these are probably connect with worldwide epochs of cooling during Pleistocene that led to advance of ice sheets during continental glaciations in the northern hemisphere.
Resumo:
The reliability of paleomagnetic records as proxies of the geomagnetic field intensity is still a matter of controversy since volcanic materials hardly provide continuous records, and marine sediments are suspected to carry a remanence biased by post-depositional realignments and/or by overprints. Such long standing debate emphasizes the need for the development of methods independent from paleomagnetism to decipher geomagnetic intensity variations. High resolution measurements of authigenic 10Be/9Be along with a detailed sedimentary record of directional and relative paleointensity variations evidence, over the 0.6-1.3 Ma time interval, frequent and recurrent excursions or short events in the late Matuyama and the early Brunhes epochs, among which two Brunhes-Matuyama reversal precursors and an intra-Jaramillo excursion. The results of this study confirm the idea of a highly unstable geomagnetic field as suggested by paleomagnetic evidences.
Resumo:
The Kongtong Mountain area is a marginal area of the Asian summer monsoon and is sensitive to monsoon dynamics. The sensitivity highlights the need to establishing long-term climate records there and evaluating links with the Asian monsoon. Using "signal-free" methods, we developed a tree-ring chronology based 52 ring-width series from 23 Pinus tabulaeformis and Pinus armandidi trees in the Kongtong Mountain, northern China. Tree growth is highly correlated (0.844) with the Palmer Drought Severity Index (PDSI) from May to July, demonstrating the strength of PDSI in modeling drought conditions in this region. We therefore developed a robust May-July PDSI reconstruction spanning 1615-2009, which explained 71.2% of the instrumental variance for the period 1951-2005. Extremely dry epochs are found in periods of 1723-1727 and 1928-1932, and significant wet conditions are seen from 1696-1700, 1753-1757 and 1963-1969. These persistent dry and wet epochs were also found in northeastern Mongolia, suggesting similar drought regimes between these two regions. The dryness that occurred in the 1920s-1930s was the most severe and was concurrent with a warming period. This warming/drying relationship of the 1920s-1930s may be an analog to the current drying trend in northern China.