23 resultados para Image-based cytometry
Resumo:
The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6?m and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus bacteria: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).
Resumo:
To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: (i) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. (ii) The inclusion probabilities must be: (a) knowable for nonsampled units and (b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne Very High Resolution (VHR) images, where: (I) an original Categorical Variable Pair Similarity Index (CVPSI, proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and (II) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic MapperT (SIAMT) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAMT by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAMT pre-classification maps proposed in this contribution, together with OQIs claimed for SIAMT by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAMT software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems (GEOSS) initiative and the QA4EO international guidelines.
Resumo:
The HCMR_SES_LAGRANGIAN_GR1_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus biomass: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).
Resumo:
A land based mesocosm experiment focusing on the study of the simultaneous impact of warming and acidification on the planktonic food web of the Eastern Mediterranean took place in August-September 2013 at the mesocosm facilities of HCMR in Crete (CRETACOSMOS). Two different pCO2 (present day and predicted for year 2100) were applied in triplicate mesocosms of 3 m**3. This was tested in two different temperatures (ambient seawater T and ambient T plus 3°C). Twelve mesocosms in total were incubated in two large concrete tanks. Temperature was controlled by sophisticated, automated systems. A large variety of chemical, biological and biochemical variables were studied, including salinity, temperature, light and alkalinity measurements, inorganic and organic, particulate and dissolved, nutrient analyses, biological stock (Chla concentration, enumeration and community composition of microbial, phyto- and zooplankton organisms) and rate (primary, bacterial, viral production, copepod egg production, zooplankton grazing, N2 fixation, P uptake) measurements, bacterial DNA extraction and phytoplankton transcriptomics, calcifiers analyses. Twenty three scientists from 6 Institutes and 5 countries participated in this experiment.
Resumo:
We demonstrate here that the growth increment variability in the shell of the long-lived bivalve mollusc Arctica islandica can be interpreted as an indicator of marine environmental change in the climatically important North Atlantic shelf seas. Multi-centennial (up to 489-year) chronologies were constructed using five detrending techniques and their characteristics compared. The strength of the common environmental signal expressed in the chronologies was found to be fully comparable with equivalent statistics for tree-ring chronologies. The negative exponential function using truncated increment-width series from which the first thirty years have been removed was chosen as the optimal detrending technique. Chronology indices were compared with the Central England Temperature record and with seawater temperature records from stations close to the study site in the Irish Sea. Statistically significant correlations were found between the chronology indices and (a) mean air temperature for the 14-month period beginning in the January preceding the year of growth, (b) mean seawater temperatures for February-October in the year preceding the year of growth (c) late summer and autumn air temperatures and sea surface temperatures for the year of growth and (d) the timing of the autumn decline in SST. Changes through time in the correlations with air and seawater temperatures and changes towards a deeper water origin for the shells in the chronology were interpreted as an indication that shell growth may respond to stratification dynamics.
Resumo:
Drill cores are essential for the study of deep-sea sediments and on-land sites because often no suitable outcrop is available or accessible. These cores form the backbone of stratigraphical studies using and combining various dating techniques. Cyclostratigraphy is usually based on fast and inexpensive measurements of physical sediment properties. One indirect but highly valuable proxy for reconstructing the sediment composition and variability is sediment color. However, cracks and other disturbances in sediment cores may dramatically influence the quality of color data retrieved either directly from photospectrometry or derived from core image analysis. Here we present simple but powerful algorithms to extract color data from core images, and focus on routines to exclude cracks from these images. Results are discussed using the example of an ODP core from the Ceara Rise in the Central Atlantic. The crack correction approach presented highly improves the quality of color data and allows the easy incorporation of cracked cores into studies based on core images. This facilitates the quick and inexpensive generation of large color datasets directly from quantified core images, for cyclostratigraphy and other purposes.