64 resultados para Icelandic wit and humor.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions have been measured on the lithic fraction of last climatic cycle sediments from the North Atlantic (~40°N/~60°N), in order to identify the origins of the particles. From the reconstruction of their transport pathways, we deduce the mechanisms that explain their distributions. The main source regions are the Canadian shield (mostly the area of Baffin Bay and western Greenland), the Scandinavian shield, the European region (British Isles and Bay of Biscay), and Iceland. We observe a significant glacial/interglacial contrast, characterized by a dominant Icelandic input via near-bottom transport by North Atlantic Deep Water (NADW) during the interglacials and a largely continent-derived contribution of surface-transported, ice-rafted detritus (IRD) during the glacial period. During the last glacial period, the Heinrich events (abrupt, massive discharges of IRD) originated not only from the Laurentide ice sheet as heretofore envisioned but also from other sources. Three other major North Atlantic ice sheets (Fennoscandian, British Isles, and Icelandic) probably surged simultaneously, discharging ice and IRD into the North Atlantic. As opposed to theories implying a unique, Laurentide origin [Gwiazda et al., 1996 doi:10.1029/95PA03135] driven by an internal mechanism [MacAyeal, 1993 doi:10.1029/93PA02200], we confirm that the Icelandic and the Fennoscandian ice sheets also surged as recently proposed by other authors, and we here also distinguish a possible detrital contribution from the British Isles ice sheet. This pan-North Atlantic phenomenon thus requires a common regional, external forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theories explaining the origin of the abrupt, massive discharges of ice-rafted detritus (IRD) into the glacial North Atlantic (the Heinrich layers (HLs)) generally point to the Laurentide ice sheet as the sole source of these events, until it was found that the IRDs also originated from Icelandic and European ice sheets (Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005; Snoeckx et al., 1999, doi:10.1016/S0025-3227(98)00168-6; Grousset et al., 2000, doi:10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2). This apparent contradiction must be reconciled as it raises fundamental questions about the mechanism(s) of HL origin. We have analyzed two ~12 cm thick HLs in an ultrahigh-resolution mode (1-2 century intervals) in a mid-Atlantic ridge piston core. The d18O record (N. pachyderma left coiling) reveals strong excursions induced by the melting of the icebergs; these excursions are associated with a strong decrease in the amount of planktic foraminafersand with a 3°C cooling of the surface waters. Counts of coarse detrital grains reveal that IRD are deposited according to a typical sequence (1) volcanic glass, (2) quartz and feldspars, (3) detrital carbonate, that implies a chronology in the melting of the differentpan-Atlantic ice sheets. Sr and Nd isotopic composition confirm that in both Heinrich layers H1 and H2, "precursor" IRD came from first Europe/Iceland, followed then by Laurentide-derived IRD. An internal cyclicity can be identified: during H1 and H2, about four to six major, abrupt discharges occurred roughly on a century timescale. The d13C and d15N records reveal that dominant inputs of continent-derived organic matter are associated with IRD within the HLs, hiding the plankton productivity signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 6-m.y.-long composite marine record of explosive silicic volcanism from five Ocean Drilling Program sites in the subpolar North Atlantic was compared with several marine records of global and local paleoclimate proxies (benthic d18O and ice-rafted debris records). Coarsening and high frequency of occurrence of Icelandic tephras were recorded in 3.6-3 Ma sediments, suggesting that these tephras were dispersed farther from the source by enhanced westerly winds over the subpolar North Atlantic. The 40Ar/39Ar ages were determined by laser probe on K-feldspar and biotite phenocrysts of tephras that were erupted from the Jan Mayen volcanic system. Compared to the tuned paleomagnetic age model, the 40Ar/39Ar dating (0.618+/-0.007 Ma to 4.90+/-0.05 Ma) yields a new age model that postdates by 155 k.y. the inception of ice rafting on the Iceland Plateau during the cold marine isotope stage M2 (i.e., 3.3-3.14 Ma).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specimens of Bolivina argentea and Bulimina marginata, two widely distributed temperate benthic foraminiferal species, were cultured at constant temperature and controlled pCO2 (ambient, 1000 ppmv, and 2000 ppmv) for six weeks to assess the effect of elevated atmospheric CO2 concentrations on survival and fitness using Adenosine Triphosphate (ATP) analyses and on shell microfabric using high-resolution SEM and image analysis. To characterize the carbonate chemistry of the incubation seawater, total alkalinity and dissolved inorganic carbon were measured approximately every two weeks. Survival and fitness were not directly affected by elevated pCO2 and the concomitant decrease in seawater pH and calcite saturation states (Omega c), even when seawater was undersaturated with respect to calcite. These results differ from some previous observations that ocean acidification can cause a variety of effects on benthic foraminifera, including test dissolution, decreased growth, and mottling (loss of symbiont color in symbiont-bearing species), suggesting that the benthic foraminiferal response to ocean acidification may be species specific. If so, this implies that ocean acidification may lead to ecological winners and losers even within the same taxonomic group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).