25 resultados para HPLC-ESI-MS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anaerobic ammonium oxidation (anammox) has been recognized as an important process converting fixed nitrogen to N2 in many marine environments, thereby having a major impact on the present-day marine nitrogen cycle. However, essentially nothing is known about the importance of anammox in past marine nitrogen cycles. In this study, we analyzed the distribution of fossil ladderane lipids, derived from bacteria performing anammox, in a sediment core from the northern Arabian Sea. Concentrations of ladderane lipids varied between 0.3 and 5.3 ng/g sediment during the past 140 ka, with high values observed during the Holocene, intervals during the last glacial, and during the penultimate interglacial. Maxima in ladderane lipid abundances correlate with high total organic carbon (4-6%) and elevated d15N (>8 per mil) values. Anammox activity, therefore, seems enhanced during periods characterized by an intense oxygen minimum zone (OMZ). Low concentrations of ladderanes (<0.5 ng/g sediment), indicating low-anammox activity, coincide with periods during which the OMZ was severely diminished. Since anammox activity covaried with OMZ intensity, it may play an important role in the loss of fixed inorganic nitrogen from the global ocean on glacial-interglacial timescales, which was so far attributed only to heterotrophic denitrification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tight coupling between the atmospheric and oceanic circulation in the equatorial Atlantic region makes this area an important region for paleoclimatic research. Previous studies report the occurrence of large amounts of terrigenous material and soil organic carbon (SOC) within the marine sediments of the eastern Gulf of Guinea. We use the accumulation rates (AR) of branched glycerol dialkyl glycerol tetraethers (GDGTs) to identify variations in SOC delivery to the Niger Fan over the last 35 ka, and compare these records to long-chain n-alkanes as a proxy for higher plant material, to an inorganic proxy for terrigenous input (aluminum AR) and to indicators for the marine productivity (AR of carbonate and crenarchaeol). In addition, sea surface temperatures (SSTs) are calculated based on the TEX86H index and environmental factors affecting the SST-reconstructions are discussed. Our results indicate that Al AR are closely connected to the rate of mean sea level change after 15 ka BP, with an additional influence of the increased monsoonal precipitation and extended vegetation cover corresponding to the African Humid Period (14.8-5.5 ka BP). Branched GDGT AR appears to be determined by shelf erosion in addition to the interplay of monsoonal precipitation and vegetation cover controlling soil erosion. Long-chain n-alkane concentrations clearly show a different trend than the other proxies, which might be due to their predominant eolian transport. Paleo-SSTs show a clear shift from colder temperatures during the last glacial period (20-22 °C) to warmer temperatures during the Holocene (24-26 °C). However, TEX86H-based SSTs are cold-biased compared to recent SSTs and Mg/Ca-based SST reconstructions, which is probably caused by a high seasonality of the Thaumarchaeota, with a maximum productivity of these organisms during the cold summer months. However, a sub-surface production of GDGTs and/or a potential bias of SST reconstruction by terrestrial input could not be completely excluded.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transition from the last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, southern Tibet to understand the climatic effects on the ecosystem. Different organic geochemical proxies (n-alkanes, glycerol dialkyl glycerol tetraethers, dD, d13Corg, d15N) are applied to reconstruct the environmental and hydrological changes on one of the longest available paleorecords at the Tibetan Plateau. Based on our paleohydrological dD proxies, the aquatic signal lags the terrestrial one due to specific ecological thresholds, which, in addition to climatic changes, can influence aquatic organisms. The aquatic organisms' response strongly depends on temperature and associated lake size, as well as pH and nutrient availability. Because the terrestrial vegetation reacts faster and more sensitively to changes in the monsoonal and climatic system, the dD of n-C29 and the reconstructed inflow water signal represent an appropriate IOSM proxy. In general, the interplay of the different air masses seems to be primarily controlled by solar insolation. In the Holocene, the high insolation generates a large land-ocean pressure gradient associated with strong monsoonal winds and the strongest IOSM. In the last glacial period, however, the weak insolation promoted the Westerlies, thereby increasing their influence at the Tibetan Plateau. Our results help to elucidate the variable IOSM, and they illustrate a remarkable shift in the lake system regarding pH, d13Corg and d15N from the last glacial to the Holocene interglacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In search of a meaningful stress indicator for Fucus vesiculosus we found that the often used quantitative determination procedures for the polysaccharide laminarin (beta-1,3-glucan) result in different kind of problems, uncertainties and limitations. This chemical long-term storage form of carbon enables perennial brown algae in seasonally fluctuating ecosystems to uncouple growth from photosynthesis. Because of this high ecological relevance a reliable and precise method for determination and quantification of laminarin is needed. Therefore, a simple, cold water extraction method coupled to a new quantitative liquid chromatography-mass spectrometrical method (LC-MS) was developed. Laminarin was determined in nine out of twelve brown algal species, and its expected typical molar mass distribution of 2000-7000 Da was confirmed. Furthermore, laminarin consisted of a complex mixture of different chemical forms, since fifteen chemical laminarin species with distinct molecular weights were measured in nine species of brown algae. Laminarin concentrations in the algal tissues ranged from 0.03 to 0.86% dry weight (DW). The direct chemical characterization and quantification of laminarin by LC-MS represents a powerful method to verify the biochemical and ecological importance of laminarin for brown algae. Single individuals of Laminaria hyperborea, L. digitata, Saccharina latissima, F. serratus, F. vesiculosus, F. spiralis, Himanthalia elongata, Cystoseira tamariscifolia, Pelvetia canaliculata, Ascophyllum nodosum, Halidrys siliquosa and Dictyota dichotoma were collected in fall (18.11.2013) during spring low tide from the shore of Finavarra, Co. Clare, west coast of Ireland (53° 09' 25'' N, 09° 06' 58'' W). After sampling, the different algae were immediately transported to the lab, lyophilized and sent to the University of Rostock. Laminarin was extracted with cold ultrapure water from the algal samples. Before extraction they were ground to < 1 mm grain size with an analytical mill (Ika MF 10 Basic). The algal material (approx. 1.5 g DW) was extracted in ultrapure water (8 mL) on a shaker (250 rpm) for 5 h. After the addition of surplus ultrapure water (4 mL) and shaking manually, 1 mL of the sample was filter centrifuged (45 µm) at 14,000 rpm (Hettich Mikro 22 R). The slightly viscous supernatant was free of suspended material and converted into a microvial (300 µL) for further analysis. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) analysis (LTQ Velos Pro ion trap spectrometer with Accela HPLC, Thermo Scientific). Laminarin species were separated on a KinetexTM column (2.6 µm C18, 150 x 3 mm). The mobile phase was 90 % ultrapure water and 10 % acetonitrile, run isocratically at a flow rate of 0.2 mL min-1. MS was working in ESI negative ion mode in a mass range of 100 - 4000 amu. Glucose contents were determined after extraction using high-performance liquid chromatography (HPLC). Extracted samples were analyzed in an HPLC (SmartLine, Knauer GmbH) equipped with a SUPELCOGELTM Ca column (30 x 7,8 mm without preColumn) and RI-detector (S2300 PDA S2800). Water was used as eluent at a flow rate of 0.8 mL min-1 at 75 °C. Glucose was quantified by comparison of the retention time and peak area with standard solutions using ChromGate software. Mannitol was extracted from three subsamples of 10-20 mg powdered alga material (L. hyperborea, L. digitata, S. latissima, F. serratus, F. vesiculosus, F. spiralis, H. elongata, P. canaliculata, A. nodosum, H. siliquosa) and quantified, following the HPLC method described by Karsten et al. (1991). For analyzing carbon and nitrogen contents, dried algal material was ground to powder and three subsamples of 2 mg from each alga thalli were loaded and packed into tin cartridges (6×6×12 mm). The packages were combusted at 950 °C and the absolute contents of C and N were automatically quantified in an elemental analyzer (Elementar Vario EL III, Germany) using acetanilide as standard according to Verardo et al. (1990).