40 resultados para HEIGHTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aral Sea is located in an arid region with much sand and salt deposits in the surrounding barren open land. Hence, significant displacements of sediments into the lakebed by the action of wind, water, gravity, or snow are likely. The bathymetry of the lake was last observed in the 1960s, and within the last half century, the structure of the lakebed has changed. Based on satellite observations of the temporal changes of shoreline (Landsat optical remote sensing) and water level (multi-mission satellite altimetry) over more than one decade an updated bathymetric chart for the East Basin of the Aral Sea has been generated. During this time, the geometry of the shallow East Basin experienced strong fluctuations due to the occurrence of periods of drying and strong inflow. By the year 2014 the East Basin fell dry. The dynamic behavior of the basin allowed for estimating the lake's bathymetry from a series of satellite-based information. The river mouth made its impression in the present East Aral Sea, because its shrinking led to the inflow of much sediment into the lake's interior. In addition, salt deposits along the shorelines increased the corresponding elevation, a phenomenon that is more pronounced in the reduced lakebed because of increased salinity. It must be noted that height estimates from satellite altimetry were only possible down to a minimum elevation of 27 m above sea level due to a lack of reliable altimetry data over the largely reduced water surface. In order to construct a complete bathymetric chart of the lakebed of the East Aral Sea heights below 27 m were obtained solely from Landsat optical images following the SRB (Selected Region Boundary) approach as described by Singh et al. (2015).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geological map shows the northeastern part of the polyphase deformed Sivorg Terrane in the Heimefrontfjella/Dronning Maud Land. The basement was affected by late Mesoproterozoic and Cambrian deformation and metamorphism. Geological mapping was carried out during the Antarctic Expedition 2000/01 of the Alfred Wegener Institute for Polar and Marine Research. Topographic data were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt/M. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (height differences) are accurate to approximately ±10 m. Published by Fachbereich Geowissenschaften, Universität Bremen & Geologisches Institut, RWTH Aachen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geological map shows the border area between the polyphase (late Mesoproterozoic and Cambrian) deformed Sivorg Terrane and the Kottas Terrane where a pervasive Cambrian tectonometamorphic overprints is lacking. Geological revision mapping was carried out during the Antarctic Expedition 2000/01 of the Alfred Wegener Institute for Polar and Marine Research. Topographic data were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (height differences) are accurate to approximately ±10 m. Published by Geologisches Institut der RWTH Aachen & Fachbereich Geowissenschaften, Bremen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new digital elevation model (DEM) is derived for the ice sheet in western Dronning Maud Land, Antarctica. It is based on differential interferometric synthetic aperture radar (SAR) from the European Remote Sensing 1/2 (ERS-1/2) satellites, in combination with ICESat's Geoscience Laser Altimeter System (GLAS). A DEM mosaic is compiled out of 116 scenes from the ERS-1 ice phase in 1994 and the ERS-1/2 tandem mission between 1996 and 1997 with the GLAS data acquired in 2003 that served as ground control. Using three different SAR processors, uncertainties in phase stability and baseline model, resulting in height errors of up to 20 m, are exemplified. Atmospheric influences at the same order of magnitude are demonstrated, and corresponding scenes are excluded. For validation of the DEM mosaic, covering an area of about 130,000 km**2 on a 50-m grid, independent ICESat heights (2004-2007), ground-based kinematic GPS (2005), and airborne laser scanner data (ALS, 2007) are used. Excluding small areas with low phase coherence, the DEM differs in mean and standard deviation by 0.5 +/- 10.1, 1.1 +/- 6.4, and 3.1 +/- 4.0 m from ICESat, GPS, and ALS, respectively. The excluded data points may deviate by more than 50 m. In order to suppress the spatially variable noise below a 5-m threshold, 18% of the DEM area is selectively averaged to a final product at varying horizontal spatial resolution. Apart from mountainous areas, the new DEM outperforms other currently available DEMs and may serve as a benchmark for future elevation models such as from the TanDEM-X mission to spatially monitor ice sheet elevation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dataset shows the ice thickness over Wilkins Ice Shelf, Antarctic Peninsula derived from TanDEM-X Interferometry. The data has been acquired between June and August 2012. The TanDEM-X heights have been linked to CryoSAT-2 heights (V. Helm) from the respective time stamp. Elevations have been transformed from WGS84 ellipsoidal heights to the EGM2008 geoid. The ice shelf thickness was estimated assuming hydrostatic equilibrium and a mean ice density of 915 kg/m³.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a regional geoid model for the area of Lake Vostok, Antarctica, from a combination of local airborne gravity, ice-surface and ice-thickness data and a lake bathymetry model. The topography data are used for residual terrain modelling (RTM) in a remove-compute-restore approach together with the GOCE satellite model GOCO03S. The disturbing potential at the Earth's surface, i.e. the quasigeoid, is predicted by least-squares collocation (LSC) and subsequently converted to geoid heights. Compared to GOCO03S our regional solution provides an additional short-wavelength signal of up to 1.48 m, or 0.56 m standard deviation, respectively. More details can be found in Schwabe et. al (2014).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wildfires are part of the Mediterranean ecosystem, however, in Israel all wildfires are human caused, either intentionally or un-intentionally. In this study we aimed to develop and test a new method for mapping fire scars from MODIS imagery, to examine the temporal and spatial patterns of wildfires in Israel in the 2000s and to examine the factors controlling Israel's wildfire regime. To map the fires we used two 'off-the-shelf' MODIS fire products as our basis-the 1 km MODIS Collection 5 fire hotspots, the 500 m MCD45A1 burnt areas-and we created a new set of fire scar maps from the 250 m MOD13Q1 product. We carried out a cross comparison of the three MODIS based wildfire scar maps and evaluated them independently against the wild fire scars mapped from 30 m Landsat TM imagery. To examine the factors controlling wildfires we used GIS layers of rainfall, land use, and a Landsat-based national vegetation map. Wildfires occurred in areas where annual rainfall was above 250 mm, mostly in areas with herbaceous vegetation. Wildfire frequency was especially high in the Golan Heights and in the foothills of the Judean mountains, and a high correspondence was found between military training zones and the spatial distribution of fire scars. The use of MODIS satellite images enabled us to map wildfires at a national scale due to the high temporal resolution of the sensor. Our MOD13Q1 based mapping of fire scars adequately mapped large (>1 km**2) fires with accuracies above 80%. Such large fires account for a large proportion of all fires, and pose the greatest threats. This database can aid managers in determining wildfire risks in space and in time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the strain and velocity behaviour of the ice surface near the two German Antarctic Stations on Filchner/Ronne and Ekström ice shelves was performed by the use of various geodetic measuring techniques. The relative positions and heights of control points valid for reference data were deduced from terrestrial observations (horizontal and vertical angle selectro optical distances). After a second sampling of data, these values served as the basis for the deformation analyses. Doppler-Satellite-observations (Navy Navigation Satellite System) made absolute positioning (latitude, longitude, height) of special points possible. These Doppler observations, supported by azimuth measurements (gyro-theodolite and sun observations) provided the datum of control networks (translations and orientation). After the repetition of these observations, the drift rates and azimuths of the control points as wenas the rotanon rates of the surface elements could be given. From vertical angles and horizontal distances differences in height end refraction coefficients were calculated. On days without clouds the refraction coefflcients increased by arnounts of up to 3.0 (in extreme cases up to 5.0). Distances over 1 km have to be subdivided to reach a standard deviation level of an heigh: difference better than 0.05 m. In order to determine the heterögeneity of refraction, some height differences should be measured with higher accuracy end-by subdivision of distances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.