18 resultados para Groundwater.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrochemistry and the microbial diversity of a pristine aquifer system near Garzweiler, Germany next to the open-pit lignite mine Garzweiler 1, were characterized. Hydrogeochemical and isotopic data indicate a recent activity of sulfate-reducing bacteria in the Tertiary marine sands. The community structure in the aquifer was studied by fluorescence in situ hybridization (FISH). Up to 7.3 x 10**5 cells/ml were detected by DAPIstaining. Bacteria (identified by the probe EUB338) were dominant, representing 51.9% of the total cell number (DAPI). Another 25.7% of total cell were affiliated with the domain Archaea as identified by the probe ARCH915. Within the domain Bacteria, the beta-Proteobacteria were most abundant (21.0% of total cell counts). Using genusspecific probes for sulfate-reducing bacteria (SRB), 2.5% of the total cells were identified as members of the genus Desulfotomaculum. This reflects the predominant role these microorganisms have been found to play in sulfatereducing zones of aquifers at other sites. Previously, all SRB cultured from this site were from the spore-forming genera Desulfotomaculum and Desulfosporosinus. Samples were taken after pumping for >= 40 min and after parameters such as temperature, pH, redox potential, oxygen and conductivity of the groundwater had remained stable for >= 15 min due to recharge of aquifer water. Hybridization and microscopy counts of hybridized and 4',6'-diamidino-2-phenylindole (DAPI)- stained cells were performed as described in Snaidr et al., (1997, http://aem.asm.org/content/63/7/2884.full.pdf). Means were calculated from 10 to 20 randomly chosen fields on each filter section, corresponding to 800-1000 DAPI stained cells. Counting results were always corrected by subtracting signals observed with the probe NON338. Formamide concentrations and oligonucleotide probes used please see further details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Semarang City, groundwater has been exploited as a natural resource since 1841. The groundwater exploited in deep wells is concentrated in confined aquifers. The previous hydrogeological model was developed in one unit of aquifer and refined then by using several hydrostratigraphical units following a regional hydrogeological map without any further analysis. At present, there is a lack of precise hydrogeological model which integrates geological and hydrogeological data, in particular for multiple aquifers in Semarang. Thus, the aim of this paper is to develop a hydrogeological model for the multiple aquifers in Semarang using an integrated data approach. Groundwater samples in the confined aquifers have been analyzed to define the water type and its lateral distribution. Two hydrogeological cross sections were then created based on several borelog data to define a hydrostratigraphical unit (HSU). The HSU result indicates the hydrogeological model of Semarang consists of two aquifers, three aquitards, and one aquiclude. Aquifer 1 is unconfined, while Aquifer 2 is confined. Aquifer 2 is classified into three groups (2a, 2b, and 2c) based on analyses of major ion content and hydrostratigraphical cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow samples collected from hand-dug pits at two sites in Simcoe County, Ontario, Canada were analysed for major and trace elements using the clean lab methods established for polar ice. Potentially toxic, chalcophile elements are highly enriched in snow, relative to their natural abundance in crustal rocks, with enrichment factor (EF) values (calculated using Sc) in the range 107 to 1081 for Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, Te, and Zn. Relative to M/Sc ratios in snow, water samples collected at two artesian flows in this area are significantly depleted in Ag, Al, Be, Bi, Cd, Cr, Cu, Ni, Pb, Sb, Tl, V, and Zn at both sites, and in Co, Th and Tl at one of the sites. The removal from the waters of these elements is presumably due to such processes as physical retention (filtration) of metal-bearing atmospheric aerosols by organic and mineral soil components as well as adsorption and surface complexation of ionic species onto organic, metal oxyhydroxide and clay mineral surfaces. In the case of Pb, the removal processes are so effective that apparently ''natural'' ratios of Pb to Sc are found in the groundwaters. Tritium measurements show that the groundwater at one of the sites is modern (ie not more than 30 years old) meaning that the inputs of Pb and other trace elements to the groundwaters may originally have been much higher than they are today; the M/Sc ratios measured in the groundwaters today, therefore, represent a conservative estimate of the extent of metal removal along the flow path. Lithogenic elements significantly enriched in the groundwaters at both sites include Ba, Ca, Li, Mg, Mn, Na, Rb, S, Si, Sr, and Ti. The abundance of these elements can largely be explained in terms of weathering of the dominant silicate (plagioclase, potassium feldspar, amphibole and biotite) and carbonate minerals (calcite, dolomite and ankerite) in the soils and sediments of the watershed. Arsenic, Mo, Te, and especially U are also highly enriched in the groundwaters, due to chemical weathering: these could easily be explained if there are small amounts of sulfides (As, Mo, Te) and apatite (U) in the soils of the source area. Elements neither significantly enriched nor depleted at both sites include Fe, Ga, Ge, and P.