18 resultados para Geometry and Spatial Awareness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses changes in the absolute magnitude and spatial geometry of particle flux and export production in a meridional transect across the central equatorial Pacific Ocean's upwelling system during oxygen isotope Stage 11 and Stage 12 and compares these time periods to the current Holocene interglacial system. Temporal and spatial variability in several chemical proxies of export production, and in particular the distributions of Ba, scavenged Al, and P, are studied in a suite of sediment cores gathered along a cross-equator transect at 5°S, 2°S, 0°, 2°N, and 4°N. Because this latitudinal range preserves strong gradients in biogenic particle flux in the modern equatorial Pacific Ocean, we are able to assess variations in the relative magnitude of export production as well as the meridional width of the equatorial system through the late Quaternary glacial/interglacial cycles. During interglacial oxygen isotope Stage 11 the chemical proxies each indicate lower particle flux and export production than during Stage 12. These records are consistent throughout the transect during this time period, but geographic narrowing (during the interglacial) and widening (during the glacial) of the meridional gradient also occurs. Although carbonate concentration varies dramatically through glacial/interglacial cycles at all latitudes studied, the productivity proxies record only minimal glacial/interglacial change at 5°S and 4°N, indicating that the carbonate minima at these latitudes is controlled dominantly by dissolution rather than production. The chemical data indicate that although the spatial geometry of the system during Stages 11 and 12 indicates maximum productivity at the equator during both glacial and interglacial conditions, the absolute magnitude of export production integrated from 5°S to 4°N during Stage 11 was 25-50% less than during Stage 12, and also was 25-50% less than it is now.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.