167 resultados para Geological time


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO2) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (10, 15, 20 °C) and two pCO2 treatments (400 µatm, pH 8.0; 2000 µatm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ~54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 {plus minus} 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 {plus minus} 0.05 Ma for the early Eocene ash -17, and 65.250 {plus minus} 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radiometric geochronology is much more challenging than previously thought.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 µmol /l in the presence of seawater Ca2+ concentrations of 10 mmol/1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly-ornate physical structures of coccoliths remain elusive.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0-11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300-700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations of lithogenic and biogenic particle fluxes using long-term sediment traps are still very rare in the northern high latitudes and restricted to the arctic marginal seas and sub-arctic regions. Here, for the first time, data on the variability of fluxes of lithogenic matter, carbonate, opal, and organic carbon as well as biomarker composition from the central Arctic Ocean are presented for a one-year period. The study has been carried out on material obtained from a long-term mooring system equipped with two multi-sampling-traps (150 and 1550 m water depth) and deployed on the southern Lomonosov Ridge close to the Laptev Sea continental margin from September 1995 to August 1996. In addition, data from surface-sediments were included in the study to get more information about the flux and sedimentation of organic carbon in this area. Annual fluxes of lithogenic matter, carbonate, opal, and particulate organic carbon are 3.9 g/m**2/y, 0.8 g/m**2/y, 2.6 g/m**2/y, 1.5 g/m**2/y, respectively, at the shallow trap and 11.3 g/m**2/y, 0.5 g/m**2/y, 2.9 g/m**2/y, 1.05 g/m**2/y, respectively, at the deep trap. Both the shallow as well as the deep trap show significant differences in vertical flux values over the year. Higher values were found from mid-July to end of October (total flux of 75-130 mg/m**2/d in the shallow trap and 40-225 mg/m**2/d in the deep trap, respectively). During all other months, fluxes were fairly low in both traps (most total flux values <10 mg/m**2/d1). The interval of increased fluxes can be separated into (1) a mid-July/August maximum caused by increased primary production as documented in high abundances of marine biomarkers and diatoms, and (2) a September/October (absolute) maximum caused by increased influence of Lena river discharge indicated by maximum lithogenic flux and high portions of terrigenous/fluvial biomarkers in both traps. Here, total fluxes in the deep trap were significantly higher than in the shallow trap, suggesting a lateral sediment flux at greater depth. The lithogenic flux data also support the importance of sediment input from the Laptev Sea for the sediment accumulation on the Lomonosov Ridge on geological time scales, as indicated in sedimentary records from this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate age models are a tool of utmost important in paleoclimatology. Constraining the rate and pace of past climate change are at the core of paleoclimate research, as such knowledge is crucial to our understanding of the climate system. Indeed, it allows for the disentanglement of the various drivers of climate change. The scarcity of highly resolved sedimentary records from the middle Eocene (Bartonian - Lutetian Stages; 47.8 - 37.8 Ma) has led to the existence of the "Eocene astronomical time scale gap" and hindered the establishment of a comprehensive astronomical time scale (ATS) for the entire Cenozoic. Sediments from the Newfoundland Ridge drilled during Integrated Ocean Drilling Program (IODP) Expedition 342 span the Eocene gap at an unprecedented stratigraphic resolution with carbonate bearing sediments. Moreover, these sediments exhibit cyclic lithological changes that allow for an astronomical calibration of geologic time. In this study, we use the dominant obliquity imprint in XRF-derived calcium-iron ratio series (Ca/Fe) from three sites drilled during IODP Expedition 342 (U1408, U1409, U1410) to construct a floating astrochronology. We then anchor this chronology to numerical geological time by tuning 173-kyr cycles in the amplitude modulation pattern of obliquity to an astronomical solution. This study is one of the first to use the 173-kyr obliquity amplitude cycle for astrochronologic purposes, as previous studies primarily use the 405-kyr long eccentricity cycle as a tuning target to calibrate the Paleogene geologic time scale. We demonstrate that the 173-kyr cycles in obliquity's amplitude are stable between 40 and 50 Ma, which means that one can use the 173-kyr cycle for astrochronologic calibration in the Eocene. Our tuning provides new age estimates for magnetochron reversals C18n.1n - C21r and a stratigraphic framework for key sites from Expedition 342 for the Eocene. Some disagreements emerge when we compare our tuning for the interval between C19r and C20r with previous tuning attempts from the South Atlantic. We therefore present a revision of the original astronomical interpretations for the latter records, so that the various astrochronologic age models for the middle Eocene in the North- and South-Atlantic are consistent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of inductively coupled argon plasma (ICAP) chemical analyses carried out on some 300 core samples from Ocean Drilling Program Sites 834, 835, 838, and 839 are presented. These sites were drilled during Leg 135 in the Lau Basin. The data are compared with total gamma (SGR) wireline logs at Sites 834 and 835. Pliocene (Piacenzian) nannofossil Zone CN12, which has been identified at Sites 834 and 835, is examined in detail using spectral analyses on core and wireline logs. The potassium and calcium concentrations from the core material were used to calculate an objective depth-to-geological time stretching function, which improved the stratigraphic correlation between sites. The integrated use of chemical analyses, wireline-log data and paleomagnetic results improved confidence in the correlations obtained. Although no significant sedimentation periodicities were obtained from the two sites, a common concentration of energy between 30 and 60 k.y. was recorded.