155 resultados para Garbit, Hubert
Resumo:
During Leg 120 basalts were recovered at four drill holes on the Kerguelen-Heard Plateau. This paper reports the trace element and Sr, Nd, Hf, and Pb isotopic characteristics of these basalts and compares these basalts with Indian Ocean basalts and Kerguelen and Heard island volcanics. Kerguelen-Heard Plateau basalts are extremely heterogeneous in character. Intersite variations are larger than intrasite variations. Part of the chemical variations of the plateau volcanics overlap with those characteristics of Kerguelen Island volcanics, which indicates tapping of the same mantle source during the two different periods of activity. The estimates of the degree of melting for the plateau basalts (smaller degree of melting than for mid-ocean ridge basalts) and the heterogeneous character of the plateau exclude an origin that requires large degrees of melting or more rigorous convection than at ocean ridges. However, all characteristics indicate an oceanic origin for the Kerguelen-Heard Plateau.
Resumo:
Vein smectites with large Rb/Sr enrichments from extensively altered basaltic oceanic crust in Deep Sea Drilling Project hole 417A in the western Atlantic define a highly constrained Rb/Sr isochron age of 108 +/- 3 m.y. This age is identical to a less well constrained age of 108 +/- 17 m.y. for vein smectites with lower Rb/Sr enrichments from adjacent hole 418A and to the 108 m.y. age of crust formation derived by paleontological and magnetic anomaly correlation. Reasonable agreement exists between the 87Sr/86Sr ratio of vein calcites from both sites and the seawater 87Sr/86Sr ratio at the time. Pervasive low-temperature alteration in the contrasting environments of sites 417 and 418 appears to be coeval and essentially coincident with basement formation. Alteration may be used to advantage in determining ages of old oceanic crust.
Resumo:
Samples of drilled oceanic crust, from DSDP Holes 417A, 417D and 418A and ODP Hole 735B, and oceanic crust from the Oman and Cyprus ophiolites, were analyzed for B contents and d11B. Composite samples from DSDP Holes 417A, 417D and 418A were used to represent the upper 550 m of altered oceanic crustal Layer 2A. Whole-rock samples from the Troodos ophiolite, Cyprus, and the Oman ophiolite were selected to represent crustal Layer 2B dikes. Composite samples from ODP Hole 735B were used to represent crustal Layer 3. The B content of the DSDP composites ranges from 7.2 ppm to 104 ppm and correlates with both d1818O and K, showing that it is a good indicator of the extent of low temperature alteration. The d11B of the DSDP composites varies between -2.5? and 5.4?. The B content of the samples from the Troodos ophiolite ranges from 2.4 ppm to 8.1 ppm; d11B varies from -0.9? to 7.8?. The B content of the Oman ophiolite samples ranges from 5.0 ppm to 11.1 ppm; d11B varies from -1.6? to 16.9?. The B content of the samples from ODP Hole 735B ranges from 1.1 ppm to 7.1 ppm; d11B varies from -4.3? to 24.9?. The general pattern displayed by these samples is one of greatest (and most variable) B enrichment at the top of the crust and least enrichment at the bottom of the section. All of these samples are enriched compared to unaltered MORB, which is believed to have a B content of approximately 0.5 ppm. The d11B values of deeper samples, from Layers 2B and 3, are more variable and generally higher than those from Layer 2A. Boron contents and d11B are not correlated. The data from the DSDP Site 417/418 composites indicate that the d11B of fluid circulating in the upper crust changes only slightly during alteration, increasing by an average of 5.1? with an accompanying decrease in B concentration of 7%. Low temperature alteration appears to be a water-dominated process resulting in minor modification of circulating seawater. A minimum water-rock ratio of 400 is calculated for these samples, implying a minimum low-temperature seawater flux through the upper oceanic crust of 3.4?10**14 l/y. The average B content of altered oceanic crust, as represented by these samples, is 5.2+/-1.7 ppm and the average d11B is 3.4+/-1.1?. This average isotopic composition is measurably different from the apparent average of oceanic sediments, supporting the idea that d11B could be useful for identifying the source(s) of B in island arcs.
Resumo:
Times of vein mineral deposition in the ocean crust have been determined both by Rb-Sr isochron ages of vein smectites and by comparison of 87Sr/86Sr ratios of vein calcites with the known variations of seawater 87Sr/86Sr ratio with time. Results from drilling sites 105, 332B and 418A, Atlantic Ocean, which have basement formation ages of 155 m.y., 3.5 m.y., and 110 m.y., respectively, show that vein deposition is essenrially complete within 5-10 m.y. after formation of the basaltic crust. This provids direct evidence that hydrothermal circulation of sea-water through the oceanic crust is an important process for only 5-10 m.y. after crust formation.
Resumo:
Site details: The raised bog Fláje-Kiefern (50°429N, 13°329 E; 760 m a.s.l.; size ca. 500x500 m) lies in the Krusné Hory Mountains (Erzgebirge), Czech Republic, about 10 km from Georgenfelder Moor in Germany. Hejny and Slavík (1988) described the phytogeographic region of the Krusne Hory Mountains as 'a region of mountain flora and vegetation, with thermophilous species largely missing. In the natural forests, conifers, especially spruce (Picea excelsa) prevail. The deforested areas have been converted into meadows and pastures'. The climate is cool with annual average temperatures of about 5°C and annual precipitation of about 900 mm. The bedrock is Precambrian crystallinicum.