17 resultados para GREENHOUSE GASES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon dioxide is one of the most important greenhouse gases which are increasing in atmospheric concentration due to human activities. For using natural CO2 dynamics as a key to understanding the climatic consequences of anthropogenic pCO2 rise, the ocean plays an important role due to its much larger carbon pool compared to the atmosphere. By studying the ratio of stable carbon isotopes in organic matter from marine sediments, it is possible to estimate the partial pressure of CO2 in surface waters during ancient times. The organic compound C37:2 alkenone, whose sole origin is from autotrophic marine algae, was chosen for d13C analysis and its isotopic composition used to reconstruct past PCO2 levels in the surface layer of the eastern Angola Basin for the last 200,000 years. In addition to the variation of ancient concentrations of dissolved CO2 ([CO2(aq)] = ce), the effect of carbon demand which depends on algal growth rate was considered. Here to, carbon isotopic fractionation of C37:2 alkenones (ep) in core-top sediments from the equatorial and the South Atlantic was calibrated against pre-industrial [CO2(aq)] and phosphate concentrations in surface waters. From these data, a variable b = (25 per mil - ep) * ce which reflects intracellular carbon demand was calculated. This variable b correlates with the ambient concentration of seawater phosphate and depends on growth rates. The bulk sediment d15N was used as a proxy parameter for calculating ancient b-values, taking into account that d15N in core-top sediments is correlated to phosphate concentration in modern surface waters. On this basis, the alkenone d13C record of GeoB1016-3 documents a permanent oceanic source for atmospheric carbon dioxide during the last 200,000 years. As a consequence of using d15N derived b-values instead of b = constant, the Angola Basin appears to have been an even stronger CO2 source during glacial periods than at present. Qualitatively similar results were reported by Jasper et al. (1994) for the central Equatorial Pacific. These observations suggest that enhanced productivity of low-latitude upwelling areas during glacial periods is not responsible for the lower CO2 content of the glacial atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permafrost landscapes experience different disturbances and store large amounts of organic matter, which may become a source of greenhouse gases upon permafrost degradation. We analysed the influence of terrain and geomorphic disturbances (e.g. soil creep, active-layer detachment, gullying, thaw slumping, accumulation of fluvial deposits) on soil organic carbon (SOC) and total nitrogen (TN) storage using 11 permafrost cores from Herschel Island, western Canadian Arctic. Our results indicate a strong correlation between SOC storage and the topographic wetness index. Undisturbed sites stored the majority of SOC and TN in the upper 70 cm of soil. Sites characterised by mass wasting showed significant SOC depletion and soil compaction, whereas sites characterised by the accumulation of peat and fluvial deposits store SOC and TN along the whole core. We upscaled SOC and TN to estimate total stocks using the ecological units determined from vegetation composition, slope angle and the geomorphic disturbance regime. The ecological units were delineated with a supervised classification based on RapidEye multispectral satellite imagery and slope angle. Mean SOC and TN storage for the uppermost 1?m of soil on Herschel Island are 34.8 kg C/m**2 and 3.4 kg N/m**2, respectively.