23 resultados para Frontal disk


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed relationships between phytoplankton standing stock, measured as chlorophyll a (Chl a), primary production (PP), and heterotrophic picoplankton production (HPP), in the epipelagic zone (0-100 m) as well as in the mesopelagic zone (100-1,000 m) in the polar frontal zone of the Atlantic sector of the Southern Ocean in austral summer (late December to January) and fall (March to early May). Integrated epipelagic HPP was positively correlated to integrated PP in summer (data for fall are not available) but not to integrated Chl a. However, integrated mesopelagic HPP was positively correlated to Chl a in summer as well as fall. The mesopelagic fraction of HPP as a percentage of total HPP was also positively correlated to Chl a, whereas the epipelagic fraction of HPP was negatively correlated to it. These results indicate that with increasing phytoplankton standing stock, constituted mainly of highly silicified diatoms, the focus of its consumption by heterotrophic picoplankton shifts from epipelagic to mesopelagic waters. With a growth efficiency of 30%, our HPP data indicate that in both the epipelagic and mesopelagic zone heterotrophic picoplankton consume 20% of PP. Mesopelagic heterotrophic picoplankton consumed around 80% of the sinking flux, measured from depletion of 234Th, which is a lower fraction than that reported from the central and subarctic Pacific. Our analysis indicates that it is important to include mesopelagic HPP in comprehensive assessments of the microbial consumption of PP, phytoplankton biomass, and particulate organic matter in cold oceanic systems with high rates of export production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years masses of ice, about 5 km long, have been protruding from the lowest part of an advancing glacier margin of the Kötlujökull in Southern Iceland. In the summer of 1983, they appeared as sediment-covered lobes, 10-60 m long, bordering the glacier rnargin like agarland. 1 to 3 push-rnoraines without ice core, rnostly sickle-shaped, occured first in the frontal parts of the lobes: behind thern came several ice-cored moraines with heights of up to several metres. The active ice in front of the precipice of the glacier is called the "glacier-foot" in this paper. The digging out of 9 lobes and the measuring of the advance of 19 lobes showed that in most cases this glacierfoot had split up at its distal end into several plate- or stem-shaped pieces of ice which were situated one upon the other, separated by moraine deposits and proceeding irregularly into the foreland at the rate of several mm/h, The sometimes different rate of advance in the same lobe and different rates of advanee in adjoining lobes (some being entirely inactive) point to a type of rnovement which is independent of the general advance of the glacier. Research in the winter of 1983/84 showed less activity in 3 examined lobes, but the activity had not ceased. The advancement of the lower parts of the glacier-foot into and across the sands of the foreland implies the following genesis of pushmoraines: Shoving off a plate of sand, folding it and pushing it over the foreland at average rates of up to 7,2 mm/h, according to the investigations in thc summer of 1983. At a certain stage of the folding process, new folds begin to develop in front of the old, and the old folds are shifted onto the backslope of thc folds in front of them until they are completely unired. In this way, "püe-moraines" arise, which become higher and higher. They include two or more folds declining towards the glacier. Systems of small moraines presumably of the same genesis occur on old moraine areas in front of the Kötlujökull. The possible cause of formation of a glacier-foot is discussed, and the moraines of the Kötlujökull are compared with certain pleistocene push-moraines.