122 resultados para Front-Sea
Resumo:
Stable isotope data on benthic foraminifera from more than 30 cores on the northern Emperor Seamounts and in the Okhotsk Sea are synthesized in paleohydrographic profiles spanning the depth range 1000-4000 m. Holocene (core-top) benthic foraminiferal d18O and d13C data are calibrated to modern hydrographic properties through measurements of d13C of SumCO2 and d18O of seawater. Cibicidoides stable isotope ratios are close to the d13C and equilibrium d18O of seawater, whereas Uvigerina d18O and d13C are variably offset from Cibicidoides. Glacial maximum d13C of Cibicidoides displays a different vertical profile than that of the Holocene. When results are adjusted by +0.32 per mil to account for the secular change in d13C during the last glacial maximum, the data coincide with the modern seawater and foraminiferal curves deeper than ~2 km. However, at shallower depths d13C gradually increases by as much as 1 per mil above the modern value. Furthermore, above 2 km the benthic d18O decreases by ~0.5 per mil. These results are consistent with a benthic front at ~2 km in the North Pacific (see Herguera et al., 1992), but they differ from interpretations based on trace metal data which indicate a source of nutrient-depleted deep water during glaciation. The isotopic data suggest that during glaciation there was a better ventilated watermass at intermediate depths in the far northwestern Pacific, it was relatively fresher than deep waters there, and deep waters were as nutrient-rich as today.
Resumo:
Time series of alkenone unsaturation indices gathered along the California margin reveal large (4° to 8°C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages.
Resumo:
The dataset is based on samples collected in the summer of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 47 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The Platforma 1981-1982 dataset contains zooplankton data collected allong 3 transect in front of the RomanianDanube Delta. Zooplankton sampling was undertaken at 10 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The dataset is based on samples collected in the summer of 1999 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 59 samples (from 24 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The dataset is based on samples collected in the spring of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 76 samples (from 27 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling on zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The Poluare 1982-1983 dataset contains zooplankton data collected allong 7 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 14 stations where samples were collected using a Juday closing net in the 0-2m layer . The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Total biomass was estimated using a tabel with wet weight for each species an stage. Taxon-specific mesozooplankton abundance was counted under the microscope.
Resumo:
A high-resolution history of paleoceanographic changes in the subpolar waters of the southern margin of the Subtropical Convergence Zone during the last 130 kyr, is present in foraminiferal assemblages of DSDP Site 594. The foraminifera indicate that sea-surface temperatures during the Last Interglacial Climax were warmer than today, and that between substage 5d through to the end of isotope stage 2, temperatures were mostly cooler than Holocene temperatures. The paleotemperatures suggest that (1) the Subtropical Convergence was located over the site during substage 5e, later moving further north, then moving southwards to near the site during the Holocene, and (2) the Polar Front was positioned over the Site during glacial stages 6, 4, 2 and possibly parts of stage 3. Several major events are indicated by the nannofloral assemblages during these large changes in sea-surface temperature and associated reorganization of ocean circulation. First, the time-progressive trends between E. huxleyi and medium to large Gephyrocupsa are unique to this site, with E. huxleyi dominating over medium Gephyrocupsa during stages 5c-a, middle part of stage 4 and after the middle point of stage 3. This unusual trend may (at least partly) be caused by the shift of the Polar Front across the site. Second, upwelling flora (E. huxleyi and small placoliths) increase in abundance during stages 1, 3 and 5, suggesting that upwelling or disturbance of water stratification took place during the interglacials. Thirdly, there are no significant differences between the distribution patterns of the various morphotypes of medium to large Gephyrocupsu, and the combined value of all medium Gephyrocupsu increases in abundance during glacials (stages 2 and 4 and the end of stage 6), similar to the abundance trends in benthic foraminifera. Finally, subordinate nannofossil taxa also show distinctive climatic trends during the last glacial cycle: (1) Syrucosphaera spp. are present in increased abundance during warmer extremes in climate (substages 5e, 5a, and stage 1); (2) Coccolithus pelagicus and Culcidiscus leptoporus dominate the subordinate nannofossil taxa, and their relative proportions seem to provide a useful paleoceanographic index, with C. pelagicus dominating when the Polar Front Zone is over the site (stages 6, 4 and 2), whilst C. leptoporus is relatively more abundant when the STC is positioned over the site (stages 1 and 5e). Increased abundance of C. pelagicus also can indicate intensified coastal upwelling.
Resumo:
Calving is a major mechanism of ice discharge of the Antarctic and Greenland ice sheets, and a change in calving front position affects the entire stress regime of marine terminating glaciers. The representation of calving front dynamics in a 2-D or 3-D ice sheet model remains non-trivial. Here, we present the theoretical and technical framework for a level-set method, an implicit boundary tracking scheme, which we implement into the Ice Sheet System Model (ISSM). This scheme allows us to study the dynamic response of a drainage basin to user-defined calving rates. We apply the method to Jakobshavn Isbræ, a major marine terminating outlet glacier of the West Greenland Ice Sheet. The model robustly reproduces the high sensitivity of the glacier to calving, and we find that enhanced calving triggers significant acceleration of the ice stream. Upstream acceleration is sustained through a combination of mechanisms. However, both lateral stress and ice influx stabilize the ice stream. This study provides new insights into the ongoing changes occurring at Jakobshavn Isbræ and emphasizes that the incorporation of moving boundaries and dynamic lateral effects, not captured in flow-line models, is key for realistic model projections of sea level rise on centennial timescales.
Resumo:
Two cores, one from the Beaufort Sea Slope at 1000 m water depth (core 750) and one from the Amundsen Gulf at 426 m (core 124), were collected to help determine paleo-ice cover in the Holocene and late glacial of this area. Site 750 is particularly sensitive to changes in paleo-ice cover because it rests beneath the present ice margin of the permanent Arctic ice pack. Core 124 was sampled just in front of the former glacier that moved out into the Amundsen Gulf and started to recede about 13 ka B.P. Both cores have a strong occurrence of calcareous foraminifera in the upper few centimeters, but these disappear throughout most of the Holocene, suggesting more open water in that time period than present. In the sediments representing the end of the last glacial period (dated at ~11,500-14,000 calibrated years B.P. (cal B.P.)) a calcareous fauna with an abundant planktic foraminiferal fauna suggests a return to almost permanent ice cover, much like the central Arctic today. Together with the foraminifera there was also abundant ice-rafted debris (IRD) in both cores between 12,000 cal B.P. and ~14,000 cal B.P., but those units are of different ages between cores, suggesting different events. The IRD in both cores appears to have the same magnetic and chemical signals, but their origins cannot be determined exactly until clay mineralogy is completed. There is abundant organic debris in both cores below the IRD units: the organics in core 750 are very diffuse and not visually identifiable, but the organic material in core 124 is clearly identifiable with terrestrial root fragments; these are 14C dated at over 37,000 years B.P. This is a marine unit as it also has glacial front foraminifera in the sediment with the organic debris that must have been originating from subglacial streams. The seismic and multibeam data both indicate glaciers did not cross the core 124 site.
Resumo:
Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002-2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km**3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km**2 and 4 ± 3 km**3 (Antarctic Peninsula), 1148 ± 432 km**2 and 12 ± 5 km**3 (Iceberg A23A), 901 ± 703 km**2 and 10 ± 8 km**3 (Filchner Ice Shelf) as well as 499 ± 277 km**2 and 5 ± 2 km**3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.