95 resultados para Forests and forestry -- Papua New Guinea -- Management
Resumo:
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate d34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate d34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.
Resumo:
Seagrass meadows are a crucial component of tropical marine reef ecosystems. The seagrass plants are colonized by a multitude of epiphytic organisms that contribute to determining the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios.
Resumo:
Measurement of biogeochemical parameters in coral reef sediments at carbon dioxide vents off Upa-Upasina (Normandy Island, Papua-New Guinea). The data includes in-situ micro/minisensor profiles, sediment characteristics, microbial and meiofauna abundances of vent sediments and reference sites without vent influence.
Resumo:
Sediment cores were recovered from the New Ireland Basin, east of Papua New Guinea, in order to investigate the late Quaternary eruptive history of the Tabar-Lihir-Tanga-Feni (TLTF) volcanic chain. Foraminifera d18O profiles were matched to the low-latitude oxygen isotope record to date the cores, which extend back to the early part of d18O Stage 9 (333 ka). Sedimentation rates decrease from >10 cm/1000 yr in cores near New Ireland to ~2 cm/1000 yr further offshore. The cores contain 36 discrete ash beds, mostly 1-8 cm thick and interpreted as either fallout or distal turbidite deposits. Most beds have compositionally homogeneous glass shard populations, indicating that they represent single volcanic events. Shards from all ash beds have the subduction-related pattern of strong enrichment in the large-ion lithophile elements relative to MORB, but three distinct compositional groups are apparent: Group A beds are shoshonitic and characterised by >1300 ppm Sr, high Ce/Yb and high Nb/Yb relative to MORB, Group B beds form a high-K series with MORB-like Nb/Yb but high Ce/Yb and well-developed negative Eu anomalies, whereas Group C beds are transitional between the low-K and medium-K series and characterised by flat chondrite-normalised REE patterns with low Nb/Yb relative to MORB. A comparison with published data from the TLTF chain, the New Britain volcanic arc and backarc including Rabaul, and Bagana on Bougainville demonstrates that only Group A beds share the distinctive phenocryst assemblage and shoshonitic geochemistry of the TLTF lavas. The crystal- and lithic-rich character of the Group A beds point to a nearby source, and their high Sr, Ce/Yb and Nb/Yb match those of Tanga and Feni lavas. A youthful stratocone on the eastern side of Babase Island in the Feni group is the most probable source. Group A beds younger than 20 ka are more fractionated than the older Group A beds, and record the progressive development of a shallow level magma chamber beneath the cone. In contrast, Group B beds represent glass-rich fallout from voluminous eruptions at Rabaul, whereas Group C beds represent distal glass-rich fallout from elsewhere along the volcanic front of the New Britain arc.