38 resultados para Forest Seed. Sabiá species. Germination. Electric conductivity. Potassium leaching. Physiological quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term environmental time series of continuously collected data are fundamental to identify and classify pulses and determine their role in aquatic systems. This paper presents a web based archive for limnological and meteorological data collected by integrated system for environmental monitoring (SIMA). The environmental parameters that are measured by SIMA are: chlorophyll-a (µg/L), water surface temperature (ºC), water column temperature by a thermistor string (ºC), turbidity (NTU), pH, dissolved oxygen concentration (mg/L), electric conductivity (µS/cm), wind speed (m/s) and direction (º), relative humidity (%), short wave radiation (W/m**2), barometric pressure (hPa). The data are collected in preprogrammed time interval (1 hour) and are transmitted by satellite in quasi-real time for any user in a range of 2500 km from the acquisition point. So far 11 hydroelectric reservoirs being monitored using the SIMA buoy. A basic statistics (mean and standard deviation) for some parameters and an example of time series were displayed. The main observed problem are divided into sensors and satellite. The sensors problems is due to the environmental characteristics of each water body. In acid waters the sensors of water quality rapidly degrade, and the collected data are invalid. Another problem is the infestation of periphyton in the sensor. SIMA buoy makes the parameters readings every hour, or 24 readings per day. However, not always received all readings because the system requires satellites passing over the buoy antenna to complete the transfer and due to the satellite constellation position, some locations inland are not met as often as necessary to complete all transmissions. This is the more often causes for lack in the time series.