30 resultados para Fluorescence-based Imaging


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We constructed a precise early Eocene orbital cyclostratigraphy for DSDP Site 550 (Leg 80, Goban Spur, North Atlantic) utilizing precession related cycles as represented in a high resolution X-Ray Fluorescence based Barium core log. Based on counting of those cycles, we constrain the exact timing of two volcanic ash layers in Site 550 which correlate to ashes +19 and -17 of the Fur Formation in Denmark. The ashes, relative to the onset of the Paleocene/Eocene Thermal Maximum (PETM), are offset by 862 kyr and 672 kyr, respectively. When combined with published absolute ages for ash -17, the absolute age for the onset of the PETM is consistent with astronomically calibrated ages. Using the current absolute age of 28.02 Ma for the Fish Canyon Tuff (FCT) standard for calibrating the absolute age of ash -17 is consistent with tuning option 2 in the astronomically calibrated Paleocene time scale of Westerhold et al. (2008) [Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H.F., 2008, Astronomical calibration of the Paleocene time: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 257, p. 377-403]. Using the recently recalibrated absolute age of 28.201 Ma for the FCT standard is consistent with tuning option 3 in the astronomically calibrated Paleocene time scale. The new results do not support the existence of any additional 405-kyr cycle in the early Paleocene astronomically tuned time scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) technologies have enabled us to determine phytoplankton community compositions at high resolution. However, few studies have adopted this approach to assess the responses of natural phytoplankton communities to environmental change. Here, we report the impact of different CO2 levels on spring diatoms in the Oyashio region of the western North Pacific as estimated by NGS of the diatom-specific rbcL gene (DNA), which encodes the large subunit of RubisCO. We also examined the abundance and composition of rbcL transcripts (cDNA) in diatoms to assess their physiological responses to changing CO2 levels. A short-term (3-day) incubation experiment was carried out on-deck using surface Oyashio waters under different pCO2 levels (180, 350, 750, and 1000 µatm) in May 2011. During the incubation, the transcript abundance of the diatom-specific rbcL gene decreased with an increase in seawater pCO2 levels. These results suggest that CO2 fixation capacity of diatoms decreased rapidly under elevated CO2 levels. In the high CO2 treatments (750 and 1000 µatm), diversity of diatom-specific rbcL gene and its transcripts decreased relative to the control treatment (350µatm), as well as contributions of Chaetocerataceae, Thalassiosiraceae, and Fragilariaceae to the total population, but the contributions of Bacillariaceae increased. In the low CO2 treatment, contributions of Bacillariaceae also increased together with other eukaryotes. These suggest that changes in CO2 levels can alter the community composition of spring diatoms in the Oyashio region. Overall, the NGS technology provided us a deeper understanding of the response of diatoms to changes in CO2 levels in terms of their community composition, diversity, and photosynthetic physiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present collection presents the original data sets used to compile Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessing the habitability of deep-sea sediments undergoing compaction, compression, and subduction at convergent margins adds to our understanding of the limits of the terrestrial biosphere. In this work, we report exploratory biomarker data on sediments obtained at Ocean Drilling Program (ODP) Sites 1253, 1254, and 1255 during drilling at the Costa Rica subduction trench and forearc sedimentary wedge. The samples selected for postcruise biomarker analyses were located within intervals of potentially enhanced fluid flow within the décollement and sedimentary wedge fault zones (Sites 1254 and 1255) and within basal carbonates at the reference site (Site 1253). The passage of fluids that are geochemically distinct from ambient interstitial water provides a disequilibrium setting that may enhance habitability. Biomarker data show low levels of microbial biomass in subseafloor sediments sampled at the Costa Rica convergent margin as deep as ~370 meters below seafloor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a WETLabs Eco-FL sensor mounted on the flowthrough system between June 4th, 2011 and March 30th, 2012. Data was recorded approximately every 10s. Two issues affected the data: 1. Periods when the water 0.2µm filtered water were used as blanks and 2. Periods where fluorescence was affected by non-photochemical quenching (NPQ, chlorophyll fluorescence is reduced when cells are exposed to light, e.g. Falkowski and Raven, 1997). Median data and their standard deviation were binned to 5min bins with period of light/dark indicated by an added variable (so that NPQ affected data could be neglected if the user so chooses). Data was first calibrated using HPLC data collected on the Tara (there were 36 data within 30min of each other). Fewer were available when there was no evident NPQ and the resulting scale factor was 0.0106 mg Chl m-3/count. To increase the calibration match-ups we used the AC-S data which provided a robust estimate of Chlorophyll (e.g. Boss et al., 2013). Scale factor computed over a much larger range of values than HPLC was 0.0088 mg Chl m-3/count (compared to 0.0079 mg Chl m-3/count based on manufacturer). In the archived data the fluorometer data is merged with the TSG, raw data is provided as well as manufacturer calibration constants, blank computed from filtered measurements and chlorophyll calibrated using the AC-S. For a full description of the processing of the Eco-FL please see Taillandier, 2015.