299 resultados para Fjords -- British Columbia -- Muchalat Inlet
Resumo:
Ocean Drilling Program Leg 169S retrieved a complete Holocene sequence from Saanich Inlet, British Columbia, Canada. Fish and diatom remains were extracted from sediments at Site 1034. Very small fish bones, teeth and scales were ubiquitous except in the lowermost glaciomarine clays; scales degraded with depth. In the identifiable fraction, Pacific herring were the most abundant with Pacific hake and cartilaginous fish yielding significant fractions. Fish remains appear just before 12 000 BP but greatest diversity does not occur until about 6500 BP. A smoothed abundance curve highlights two periods of maximal abundance at about 1500 and 6500 BP. Abundances in the last 1000 years are lower than the rest of the record. A correlation with abundances of seven phytoplankton taxa is significant; diatoms explain about a third of the variance. This study demonstrates the use of fish and diatoms from the same paleosedimentary matrix to examine millennia-scale correlations between primary and tertiary production.
Resumo:
This paper explores the paleoseismic record potentially preserved in the upper 40 m of hydraulic piston cores collected in 1996 at two sites in Saanich Inlet, British Columbia, during ocean drilling program (ODP) Leg 169S. The ODP cores are missing 1-2 m of water-rich sediment directly underlying the seafloor, but this sediment is preserved in shorter piston cores collected in 1989 and 1991. The upper part of the ODP cores consists of rhythmically laminated (varved) marine mud with intercalated massive beds, interpreted to be debris flow deposits. Some of the debris flow deposits are linked to past earthquakes, including the 1946 Vancouver Island earthquake (M7.2), a great (M8-9) plate-boundary earthquake at the Cascadia subduction zone in January 1700, and a large crustal or plate-boundary earthquake about 1000 yr ago. Earthquakes may also be responsible for debris flows in about AD 1600, 1500, 1250, 1150, 850, 450, 350, 180, and BC 200, 220, 500, 900, and 1050. If so, the average recurrence interval for moderate to large earthquakes, which trigger debris flows in Saanich Inlet, is about 150 yr. This recurrence interval is broadly consistent with the frequency of moderate to large earthquakes in the region during the historical period. Debris flows, however, can also be triggered by non-seismic processes, making it difficult to assemble a complete earthquake record from the Saanich Inlet cores. We propose that extensive debris flow deposits, emplaced by single large failures or many smaller coincident failures, probably have a seismic origin.
Resumo:
We measured the concentrations of redox-sensitive trace metals (Mn, V, Mo, U, Cd and Re) in sediments from ODP Leg 169S Hole 1033B in Saanich Inlet, British Columbia, to determine changes in redox conditions associated with the onset of laminated sediments at ~12.5 kyr. The most striking result is a large peak in authigenic Re along with detrital levels of Mo at the glacial terrigenous clay-diatomaceous sediment transition. In contrast, the underlying glacial terrigenous clay, which extends throughout the bottom section of the core, is chemically similar to detrital concentrations, either Cowichan River particulates or average shale values. These data suggest a period of oxic bottom waters but reducing pore-waters. This could be due to the dramatic transformation of Saanich Inlet during the late deglaciation from an open bay to an inlet, which restricted circulation and slowed bottom water oxygen renewal. A peak and gradual increase in authigenic Mn in younger sediments subsequent to the Re peak suggests that increasingly oxic conditions followed the authigenic enrichment in Re. These conditions could be connected to the Younger Dryas cooling period, which was coincident with an increase in well oxygenated upwelled waters on the west coast of North America that form the bottom waters of Saanich Inlet. Metal concentrations in a gray clay bed (~11 kyr) are similar to their concentrations in the glacial terrigenous clay, implying that they have a common source. Authigenic enrichments of Re with little authigenic Mo and Cd suggest that before the deposition of this bed, bottom waters were oxic and pore-water oxygen was consumed in the top centimeter or less. Laminations above the clay layer suggest anoxic conditions, which are also indicated by higher authigenic Mo and Cd and slightly lower Re/Mo ratios in these sediments. The basin remained mostly anoxic after the gray clay was emplaced, as seen by continuous authigenic enrichment of the redox-sensitive trace metals. These results are consistent with increased stratification of the water column, brought about by an influx of fresh water to the basin by a large flood.
Resumo:
The Holocene section in Saanich Inlet, Vancouver Island, British Columbia, is 50-70 m thick. Cores from Saanich Inlet obtained during Leg 169S of the Ocean Drilling Program afford an excellent opportunity to obtain an ultrahigh-resolution paleomagnetic and environmental magnetic record for the Holocene and Late Pleistocene of western Canada. We have used an automated, long-core cryogenic magnetometer to study over 380 m of continuous u-channel samples from ODP Sites 1033 and 1034, the two sites that constitute Leg 169S. Holocene records of paleomagnetic inclination and intensity show excellent intra-site correlation and can be used to fine-tune the lithologic correlation among cores from each site. The Late Pleistocene magnetic records provide a means of intra-site correlation of the otherwise featureless marine clay. Near the Holocene/Late Pleistocene boundary, both sites contain a magnetic intensity feature that is interpreted as a Missoula-type flood event on the Fraser River. The composite Holocene inclination records from the two sites are quite similar and provide a means of comparing current age-models that are based on radiocarbon dating of material from each site. This comparison shows only minor differences in the available age-models. It also provides strong evidence that the sediments of Saanich Inlet represent a reliable record of geomagnetic field behavior.
Resumo:
Holocene laminated sediments in Saanich Inlet, British Columbia, are interrupted by frequent, non-laminated, massive layers. These layers may be debris flows released by earthquakes or bioturbated sediments deposited during periods of relatively high bottom water oxygen concentration and/or low surface productivity, or both. We determined the organic carbon content and the concentration of a suite of redox-sensitive metals in bulk sediments at approximately 1-cm resolution across a laminated-massive-laminated interval (ODP Leg 169S Sample 1033B-4H-4,54-74), to determine the redox conditions under which the massive layer was deposited. Our results indicate that this massive interval was deposited under anoxic bottom waters. Manganese/Al ratios are consistently low throughout the massive section, while Mo/Al, Cd/Al, Re/Al, and U/Al ratios are enriched relative to their metal/Al ratios in detrital material (represented by Cowichan River suspended sediments). The concentration of organic carbon in the lower portion of the massive layer is higher than in the upper portion, which has a concentration similar to that in the overlying and underlying laminated sediments. Well-defined peaks in Mo/Al, Cd/Al, and Re/Al and a broad peak in U/Al occur in the lower portion of the massive layer. The positions of the Cd/Al, Re/Al, and Mo/Al peaks, as well as the increase in organic carbon content with depth in the massive layer, are best explained by a process of diagenetic redistribution of metals that occurred after the massive layer was emplaced.
Resumo:
Uncertainty currently exists about the removal of carbon (C) and phosphorus (P) from the oceanic reservoir, especially in low oxygen settings. In this paper, the cycling of C and P is examined in sediments from the anoxic Saanich Inlet, cored by Ocean Drilling Program (ODP) Leg 169S in 1996 at two sites. Although Corg/Porg ratios are high and increase with depth in the Saanich Inlet, this effect is due largely to a remobilization of P from an organic matter sink to an authigenic sink. Reducible sedimentary components act as temporary shuttles in this process even in this anoxic setting, with the ultimate burial sink for the remobilized P being carbonate fluorapatite. The effective Corg/Preactive molar ratio appears to be about 150-200, indicating some preferential loss of P compared to C during organic matter degradation, but not approaching previously reported values of over 3000 in black shales. Reactive P accumulation rates in this basin range from 10,000-60,000 µmol/cm**2/kyr, greatly exceeding the range of 500-8000 µmol/cm**2/kyr found in most continental-margin settings, including regions of modern phosphogenesis. The initiation of marine sedimentation in the Saanich Inlet occurred after deglaciation, and the high rates of P burial seen here may provide an end-member example of the effects of sea level and margin sedimentation on the distribution of P within the marine P cycle.