28 resultados para Feng shui.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved procedure for lithium isotope analysis using Li3PO4 as the ion source has been investigated for application to geological samples. The 7Li/6Li ratio is measured using double rhenium filament thermal ionization mass spectrometry in which isotopic fractionation is minimized at high temperatures. The method produces a stable, high intensity Li+ ion beam that allows measurement of nanogram quantities of lithium. This results in a reduction in sample size of up to 1000 times relative to that required for the established Li2BO2+ method while maintaining a comparable precision of better than 1? (1 sigma). Replicate analyses of the NBS L-SVEC Li2CO3 standard yielded a mean value of 12.1047+/-0.0043 (n=21), which is close to the reported absolute value of 12.02+/-0.03. Intercalibration with a wide range of geological samples shows excellent agreement between the Li3PO4 and Li2BO2+ techniques. Replicate analyses of seawater and a fresh submarine basalt display high precision results that agree with previous measurements. Taking advantage of the high ionization efficiency of the phosphate ion source, we have made the first measurements of the lithium concentration (by isotope dilution) and isotopic composition of calcareous foraminiferal tests and other marine carbonates. Preliminary results indicate that substantial lithium exchange occurs between carbonate sediments and their interstitial waters. In addition, a possible link between lithium paleoceanography and paleoclimate during the last 1000 ky may be derived from planktonic foraminiferal tests. This highly sensitive technique can be applied in the examination of low lithium reservoirs and thereby provide insight into some fundamental aspects of lithium geochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of Be distributions in subduction zone sediments will help to understand questions regarding the enrichments of cosmogenic Be-10 in arc volcanic rocks. Analyses of Be-10 and Be-9 in sediments of Ocean Drilling Program Site 808, Nankai Trough and Be-9 in porewaters of Site 808 and Sites 671 and 672, Barbados ridge complex, show significant decreases in solid phase Be-10 and large increases of porewater Be-9 at the location of the décollement zone and below or at potential flow conduits. These data imply the potential mobilization of Be during pore fluid expulsion upon sediment burial. Experiments involving reaction between a décollement sediment and a synthetic NaCl-CaCl2 solution at elevated pressure and temperatures were conducted in an attempt to mimic early subduction zone processes. The results demonstrate that Be is mobilized under elevated pressure and temperature with a strong pH dependence. The Be mobilization provides an explanation of Be-10 enrichment in arc volcanic rocks and supports the argument of the importance of the fluid processes in subduction zones at convergent margins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium isotopic compositions of hydrothermally altered sediments of Deep Sea Drilling Project (DSDP) site 477/477A, as well as high temperature vent fluids of the Guaymas Basin, have been determined to gain an understanding of lithium exchange during fluid-sediment interaction at this sediment-covered spreading center. Unaltered turbidite of the basin has a d6Li value of -10%, 5-7% heavier than fresh oceanic basalts. Contact metamorphism induced by a shallow sill intrusion results in a decrease of the lithium content of the adjacent sediments and a lighter isotopic value (-8%). Below the sill, sediments altered by a deep-seated hydrothermal system show strong depletions in lithium, while lithium isotopic compositions vary greatly, ranging from -11 to +1%. The shift to lighter composition is the result of preferential retention of the lighter isotope in recrystallized phases after destruction of the primary minerals. The complexity of the isotope profile is attributed to inhomogeneity in mineral composition, the tortuous pathway of fluids and the temperature effect on isotopic fractionation. The range of lithium concentration and d6Li values for the vent fluids sampled in 1982 and 1985 overlaps with that of the sediment-free mid-ocean ridge systems. The lack of a distinct expression of sediment input is explained in terms of a flow-through system with continuous water recharge. The observations on the natural system agree well with the results of laboratory hydrothermal experiments. The experimental study demonstrates the importance of temperature, pressure, water/rock ratio, substrate composition and reaction time on the lithium isotopic composition of the reacted fluid. High temperature authigenic phases do not seem to constitute an important sink for lithium and sediments of a hydrothermal system such as Guaymas are a source of lithium to the ocean. The ready mobility of lithium in the sediment under elevated temperature and pressure conditions also has important implications for lithium cycling in subduction zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study of the interstitial water concentration-depth distributions of iodide, bromide, boron, d11B, and dissolved organic carbon, as represented by absorbance at 325 nm (yellow substance: YS) and laser-induced fluorescence (LIF), is a follow-up of the extensive shipboard program of interstitial water analysis during ODP Leg 131. Most of the components studied are associated with processes involving the diagenesis of organic matter in these sediments. Three zones of the sediment column are discussed separately because of the different processes involved in causing concentration changes: 1. The upper few hundreds of meters: In this zone, characterized by very high sedimentation rates (>1200 m/m.y.), interstitial waters show very sharp increases in alkalinity, ammonia, iodide, bromide, YS, and LIF, mainly as a result of the diagenesis of organic carbon; 2. Whereas below 200 mbsf concentration gradients all show a decreasing trend, the zone at ~ 365 mbsf is characterized by concentration reversals, mainly due to the recent emplacement of deeper sediments above this depth as a result of thrust-faulting; 3. The décollement zone (945-964 mbsf) is characterized by concentration anomalies in various constituents (bromide, boron, d11B, manganese, LIF). These data are interpreted as resulting from an advective input of fluids along the zone of décollement as recent as ~ 200 ka. Possibly periodic inputs of anomalous fluids still seem to occur along this décollement zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pH of the surface ocean is a sensitive function of its alkalinity and total inorganic carbon concentration, properties which also control the partial pressure of atmospheric carbon dioxide (Broecker and Peng, 1982). Thus, an accurate proxy for past ocean pH could yield information about variations in atmospheric CO2. Recently, it has been suggested that the boron isotopic composition of foraminiferal tests depends on the pH of sea water as well as its isotopic composition (Vengosh et al., 1991, doi:10.1016/0016-7037(91)90139-V; Hemming and Hanson, 1992, doi:10.1016/0016-7037(92)90151-8). Here we present boron isotope and elemental data for sedimentary pore fluids and isotope data for bulk foraminiferal samples from a deep-sea sediment core. The composition of the pore waters implies that sea water boron concentrations and isotopic composition have been constant during the past 21 Myr, allowing us to reconstruct past ocean pH directly from the foraminiferal isotope data. We find that 21 Myr ago, surface ocean pH was only 7.4 ±0.2, but it then increased to 8.2 ±0.2 (roughly the present value) about 7.5 Myr ago. This is consistent with suggestions (Popp et al., 1989; Cerling, 1991; Arthur et al., 1991) that atmospheric CO2 concentrations may have been much higher 21 Myr ago than today.