74 resultados para FREEZE-THAW CYCLES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The freezing and desiccation tolerance of 12 Klebsormidium strains, isolated from various habitats (aero-terrestrial, terrestrial, and hydro-terrestrial) from distinct geographical regions (Antarctic - South Shetlands, King George Island, Arctic - Ellesmere Island, Svalbard, Central Europe - Slovakia) were studied. Each strain was exposed to several freezing (-4°C, -40°C, -196°C) and desiccation (+4°C and +20°C) regimes, simulating both natural and semi-natural freeze-thaw and desiccation cycles. The level of resistance (or the survival capacity) was evaluated by chlorophyll a content, viability, and chlorophyll fluorescence evaluations. No statistical differences (Kruskal-Wallis tests) between strains originating from different regions were observed. All strains tested were highly resistant to both freezing and desiccation injuries. Freezing down to -196°C was the most harmful regime for all studied strains. Freezing at -4°C did not influence the survival of studied strains. Further, freezing down to -40°C (at a speed of 4°C/min) was not fatal for most of the strains. RDA analysis showed that certain Antarctic and Arctic strains did not survive desiccation at +4°C; however, freezing at -40°C, as well as desiccation at +20 °C was not fatal to them. On the other hand, other strains from the Antarctic, the Arctic, and Central Europe (Slovakia) survived desiccation at temperatures of +4°C, and freezing down to -40°C. It appears that species of Klebsormidium which occupy an environment where both seasonal and diurnal variations of water availability prevail, are well adapted to freezing and desiccation injuries. Freezing and desiccation tolerance is not species-specific nor is the resilience only found in polar strains as it is also a feature of temperate strains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Passive chambers are used to examine the impacts of summer warming in Antarctica but, so far, impacts occurring outside the growing season, or related to extreme temperatures, have not been reported, despite their potentially large biological significance. In this review, we synthesise and discuss the microclimate impacts of passive warming chambers (closed, ventilated and Open Top Chamber-OTC) commonly used in Antarctic terrestrial habitats, paying special attention to seasonal warming, during the growing season and outside, extreme temperatures and freeze-thaw events. Both temperature increases and decreases were recorded throughout the year. Closed chambers caused earlier spring soil thaw (8-28 days) while OTCs delayed soil thaw (3-13 days). Smaller closed chamber types recorded the largest temperature extremes (up to 20°C higher than ambient) and longest periods (up to 11 h) of above ambient extreme temperatures, and even OTCs had above ambient temperature extremes over up to 5 consecutive hours. The frequency of freeze-thaw events was reduced by ~25%. All chamber types experienced extreme temperature ranges that could negatively affect biological responses, while warming during winter could result in depletion of limited metabolic resources. The effects outside the growing season could be as important in driving biological responses as the mean summer warming. We make suggestions for improving season-specific warming simulations and propose that seasonal and changed temperature patterns achieved under climate manipulations should be recognised explicitly in descriptions of treatment effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents soil temperature and moisture regimes from March 2008 to January 2009 for two active layer monitoring (CALM-S) sites at King George Island, Maritime Antarctica. The monitoring sites were installed during the summer of 2008 and consist of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths and one soil moisture probe placed at the bottommost layer at each site (accuracy of ± 2.5%), recording data at hourly intervals in a high capacity datalogger. The active layer thermal regime in the studied period for both soils was typical of periglacial environments, with extreme variation in surface temperature during summer resulting in frequent freeze and thaw cycles. The great majority of the soil temperature readings during the eleven month period was close to 0 °C, resulting in low values of freezing and thawing degree days. Both soils have poor thermal apparent diffusivity but values were higher for the soil from Fildes Peninsula. The different moisture regimes for the studied soils were attributed to soil texture, with the coarser soil presenting much lower water content during all seasons. Differences in water and ice contents may explain the contrasting patterns of freezing of the studied soils, being two-sided for the coarser soil and one-sided for the loamy soil. The temperature profile of the studied soils during the eleven month period indicates that the active layer reached a maximum depth of approximately 92 cm at Potter and 89 cm at Fildes. Longer data sets are needed for more conclusive analysis on active layer behaviour in this part of Antarctica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dataset provides scaling information applicable to satellite derived coarse resolution surface soil moisture datasets following the approach by Wagner et al. (2008). It is based on ENVISAT ASAR data and can be utilized to apply the Metop ASCAT dataset (25 km) for local studies as well as to assess the representativeness of in-situ measurement sites and thus their potential for upscaling. The approach based on temporal stability (Wagner et al. 2008) consists of the assessment of the validity of the coarse resolution datasets at medium resolution (1 km, product is the so called 'scaling layer').

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous sediment record from Lake El'gygytgyn in the northeastern Eurasian Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes have likely played a crucial role for sediment delivery to the lake. Changes in the ground-ice hydrochemical composition (d18O, dD, pH, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated periods of freeze and thaw at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0-9.1 m core depth) and a post-depositional record of thawing and refreezing in deeper layers of the core (9.1-141.0 m core depth). These lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. During times of lake level fall these layers froze over again. At least three cycles of freeze and thaw are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time. Past permafrost thaw and freeze may have destabilised the basin slopes of Lake El'gygytgyn and this has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ~90-year Gleissberg and ~200-year de Vries cycles have been identified as two distinctive quasi-periodic components of Holocene solar activity. Evidence exists for the impact of such multi-decadal to centennial-scale variability in total solar irradiance (TSI) on climate, but concerning the ocean, this evidence is mainly restricted to the surface response. Here we use a comprehensive global climate model to study the impact of idealized solar forcing, representing the Gleissberg and de Vries cycles, on global ocean potential temperature at different depth levels, after a recent proxy record indicates a signal of TSI anomalies in the northeastern Atlantic at mid-depth. Potential impacts of TSI anomalies on deeper oceanic levels are climatically relevant due to their possible effect on ocean circulation by altering water mass characteristics. Simulated solar anomalies are shown to penetrate the ocean down to at least deep-water levels. Despite the fact that the two forcing periods differ only by a factor of ~2, the spatial pattern of response is significantly distinctive between the experiments, suggesting different mechanisms for solar signal propagation. These are related to advection by North Atlantic Deep Water flow (200-year forcing), and barotropic adjustment in the South Atlantic in response to a latitudinal shift of the westerly wind belt (90-year forcing).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated high-resolution stratigraphy and orbital tuning is presented for the Loulja sections located in the Bou Regreg area on the Atlantic side of Morocco. The sections constitute the upward continuation of the upper Messinian Ain el Beida section and contain a well-exposed, continuous record of the interval straddling the Miocene-Pliocene (M-P) boundary. The older Loulja-A section, which covers the interval from ~5.59 to 5.12 Ma, reveals a dominantly precession-controlled color cyclicity that allows for a straightforward orbital tuning of the boundary interval and for detailed cyclostratigraphic correlations to the Mediterranean; the high-resolution and high-quality benthic isotope record allows us to trace the dominantly obliquity-controlled glacial history. Our results reveal that the M-P boundary coincides with a minor, partly precession-related shift to lighter "interglacial" values in d18O. This shift and hence the M-P boundary may not correlate with isotope stage TG5, as previously thought, but with an extra (weak) obliquity-controlled cycle between TG7 and TG5. Consequently, the M-P boundary and basal Pliocene flooding of the Mediterranean following the Messinian salinity crisis are not associated with a major deglaciation and glacio-eustatic sea level rise, indicating that other factors, such as tectonics, must have played a fundamental role. On the other hand, the onset of the Upper Evaporites in the Mediterranean marked by hyposaline conditions coincides with the major deglaciation step between marine isotope stage TG12 and TG11, suggesting that the associated sea level rise is at least partly responsible for the apparent onset of intermittently restricted marine conditions following the main desiccation phase. Finally, the Loulja-A section would represent an excellent auxiliary boundary stratotype for the M-P boundary as formally defined at the base of the Trubi marls in the Eraclea Minoa section on Sicily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four retrogressive thaw slumps (RTS) located on Herschel Island and the Yukon coast (King Point) in the western Canadian Arctic were investigated to compare the environmental, sedimentological and geochemical setting and characteristics of zones in active and stabilised slumps and at undisturbed sites. In general, the slope, sedimentology and biogeochemistry of stabilised and undisturbed zones differ, independent of their age or location. Organic carbon contents were lower in slumps than in the surrounding tundra, and the density and compaction of slump sediments were much greater. Radiocarbon dating showed that RTS were likely to have been active around 300 a BP and are undergoing a similar period of increased activity now. This cycle is thought to be controlled more by local geometry, cryostratigraphy and the rate of coastal erosion than by variation in summer temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An astronomically calibrated timescale has recently been established [Hilgen, 1991, doi:10.1016/0012-821X(91)90082-S; doi:10.1016/0012-821X(91)90206-W] for the Pliocene and earliest Pleistocene based on the correlation of dominantly precession controlled sedimentary cycles (sapropels and carbonate cycles) in Mediterranean marine sequences to the precession time series of the astronomical solution of Berger and Loutre [1991, doi:10.1016/0277-3791(91)90033-Q ] (hereinafter referred to as Ber90). Here we evaluate the accuracy of this timescale by (1) comparing the sedimentary cycle patterns with 65°N summer insolation time series of different astronomical solutions and (2) a cross-spectral comparison between the obliquity-related components in the 65°N summer insolation curves and high-resolution paleoclimatic records derived from the same sections used to construct the timescale. Our results show that the carbonate cycles older than 3.5 m.y. should be calibrated to one precession cycle older than previously proposed. Application of the astronomical solution of Laskar [1990, doi:10.1016/0019-1035(90)90084-M], (hereinafter referred to as La90) with present-day values for the dynamical ellipticity of the Earth and tidal dissipation by the Sun and Moon results in the best fit with the geological record, indicating that this solution is the most accurate from a geological point of view. Application of Ber90, or La90 solutions with dynamical ellipticity values smaller or larger than the present-day value, results in a less obvious fit with the geological record. This implies that the change in the planetary shape of the Earth associated with ice loading and unloading near the poles during the last 5.3 million years was too small to drive the precession into resonance with the perturbation term, s6-g6+g5, of Jupiter and Saturn. Our new timescale results in a slight but significant modification of all ages of the sedimentary cycles, bioevents, reversal boundaries, chronostratigraphic boundaries, and glacial cycles. Moreover, a comparison of this timescale with the astronomical timescales of ODP site 846 [Shackleton et al., 1995, doi:10.2973/odp.proc.sr.138.106.1995; doi:10.2973/odp.proc.sr.138.117.1995] and ODP site 659 [Tiedemann et al., 1994, doi:10.1029/94PA00208] indicates that all obliquity-related glacial cycles prior to ~4.7 Ma in ODP sites 659 and 846 should be correlated with one obliquity cycle older than previously proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic soils contain a large fraction of Earth's stored carbon. Temperature increases in the Arctic may enhance decomposition of this stored carbon, shifting the role of Arctic soils from a net sink to a new source of atmospheric CO2. Predicting the impact of Arctic warming on soil carbon reserves requires knowledge of the composition of the stored organic matter. Here, we employ solid state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to investigate the chemical composition of soil organic matter collected from drained thaw-lake basins ranging in age from 0 to 5500 years before present (y BP). The 13C NMR and FTIR-PAS data were largely congruent. Surface horizons contain relatively large amounts of O-alkyl carbon, suggesting that the soil organic matter is rich in labile constituents. Soil organic matter decreases with depth with the relative amounts of O-alkyl carbon decreasing and aromatic carbon increasing. These data indicate that lower horizons are in a more advanced stage of decomposition than upper horizons. Nonetheless, a substantial fraction of carbon in lower horizons, even for ancient thaw-lake basins (2000-5500 y BP), is present as O-alkyl carbon reflecting the preservation of intrinsically labile organic matter constituents. Climate change-induced increases in the depth of the soil active layer are expected to accelerate the depletion of this carbon.