383 resultados para Erthal, Franz Ludwig von, Bishop of Würzburg and Bamberg, 1730-1795.
Resumo:
The Persian Gulf situated in the arid climate region of the northern hemisphere shows special conditions in its hydrochemistry. The high evaporation, the lack of large rivers, and the exclusion of deep water from the Indian Ocean governs the nutrient cycle. At 28 stations in the deeper part of the Persian Gulf (Iran side), in the Strait of Hormuz, and in the Gulf of Oman determinations of dissolved oxygen, dissolved inorganic phosphate, silicate, and pH were carried out. On 4 selected transverse profiles for phosphate, and dissolved oxygen and on 1 length profile for phosphate, silicate, oxygen, and pH the distribution of these components is shown and the in- and outflow is characterized. It is also pointed out that the nutrients on their way into the Persian Gulf are diminished and that temporary replenishment supply from a layer of about 100 m depth in the Indian Ocean follows. On one horizontal map the phosphate distribution in the surface and 30 m layer gives reference to biological activity. One diagram where nitrogen components are plotted against phosphate shows that nitrate is a limiting factor for productivity. O2/PO4-P and PO4-P/S? diagrams enable the different waterbodies and mixed layers to be characterized.
Resumo:
Seven opal-CT-rich and five quartz-rich porcellanites and cherts from Site 504 have a range in oxygen-isotope values of 24.4 and 29.4 per mil. In opal-CT rocks, d18O becomes larger with sub-bottom depth and with age. Quartz-rich rocks do not show these trends. Boron, in general, increases with decreasing d18O for porcellanites and cherts considered together, supporting the conclusion that boron is incorporated within the quartz crystal structure during precipitation of the SiO2. Silicification of the chalks at Site 504 began 1 m.y. ago - that is, 5 m.y. after sedimentation commenced on the oceanic crust. Temperatures of chert formation determined from oxygen-isotope compositions reflect diagenetic temperatures rather than bottom-water temperatures, and are comparable to temperatures of formation determined by down-hole measurements. Opal-A in the chalks began conversion to opal-CT when a temperature of 50°C was reached in the sediment column. Conversion of opal-CT to quartz started at 55 °C. Silicification occurred over a stratigraphic thickness of about 10 meters when the temperature at the top of the 10 meters reached about 50°C. It took about 250,000 years to complete the silica transformation within each 10-meter interval of sediment at Site 504. Quartz formed over a stratigraphic range of at least 30 meters, at temperatures of about 54 to 60°C. The time and temperatures of silicification of Site 504 rocks are more like those at continental margins than those in deep-sea, open-ocean deposits.