32 resultados para Elasticity of output with respect to factors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last several decades debates on the 'tempo and mode' of evolution have centered on the question whether morphological evolution preferentially occurs gradually or punctuated, i.e., with long periods of stasis alternating with short periods of rapid morphological change and generation of new species. Another major debate is focused on the question whether long-term evolution is driven by, or at least strongly influenced by changes in the environment, or by interaction with other life forms. Microfossils offer a unique opportunity to obtain the large datasets as well as the precision in dating of subsequent samples to study both these questions.We present high-resolution analyses of selected calcareous nannofossils from the deep-sea section recovered at ODP Site 1262 (Leg 208) in the South-eastern Atlantic. The studied section encompasses nannofossil Zones NP4-NP12 (equivalent to CP3-CP10) and Chrons C27r-C24n. We document more than 70 biohorizons occurring over an about 10 Myr time interval, (~62.5 Ma to ~52.5 Ma), and discuss their reliability and reproducibility with respect to previous data, thus providing an improved biostratigraphic framework, which we relate to magnetostratigraphic information, and present for two possible options of a new Paleocene stratigraphic framework based on cyclostratigraphy. This new framework enabled us to tentatively reconstruct steps in the evolution of early Paleogene calcareous nannoplankton through documentation of transitional morphotypes between genera and/or species and of the phylogenetic relations between the genera Fasciculithus, Heliolithus, Discoasteroides and Discoaster, as well as between Rhomboaster and Tribrachiatus. The exceptional record provided by the continuous, composite sequence recovered at Walvis Ridge allows us to describe the mode of evolution among calcareous nannoplankton: new genera and/or new species usually originated through branching of lineages via gradual, but relatively rapid, morphological transitions, as documented by the presence of intermediate forms between the end-member ancestral and descendant forms. Significant modifications in the calcareous nannofossil assemblages are often "related" to significant changes in environmental conditions, but the appearance of structural innovations and radiations within a single genus also occurred during "stable" environmental conditions. These lines of evidence suggest that nannoplankton evolution is not always directly triggered by stressed environmental conditions but could be also driven by endogenous biotic control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25-0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 (pCO2~1100-1200 µatm) than at a control pHNBS of ~8.1 (pCO2~460-640 µatm). Moreover, a decrease of 12.0±5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 (pCO2~1900 µatm) than at a control pHNBS of ~8.1 (pCO2~540 µatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A circumpolar representative and consistent wetland map is required for a range of applications ranging from upscaling of carbon fluxes and pools to climate modelling and wildlife habitat assessment. Currently available data sets lack sufficient accuracy and/or thematic detail in many regions of the Arctic. Synthetic aperture radar (SAR) data from satellites have already been shown to be suitable for wetland mapping. Envisat Advanced SAR (ASAR) provides global medium-resolution data which are examined with particular focus on spatial wetness patterns in this study. It was found that winter minimum backscatter values as well as their differences to summer minimum values reflect vegetation physiognomy units of certain wetness regimes. Low winter backscatter values are mostly found in areas vegetated by plant communities typically for wet regions in the tundra biome, due to low roughness and low volume scattering caused by the predominant vegetation. Summer to winter difference backscatter values, which in contrast to the winter values depend almost solely on soil moisture content, show expected higher values for wet regions. While the approach using difference values would seem more reasonable in order to delineate wetness patterns considering its direct link to soil moisture, it was found that a classification of winter minimum backscatter values is more applicable in tundra regions due to its better separability into wetness classes. Previous approaches for wetland detection have investigated the impact of liquid water in the soil on backscatter conditions. In this study the absence of liquid water is utilized. Owing to a lack of comparable regional to circumpolar data with respect to thematic detail, a potential wetland map cannot directly be validated; however, one might claim the validity of such a product by comparison with vegetation maps, which hold some information on the wetness status of certain classes. It was shown that the Envisat ASAR-derived classes are related to wetland classes of conventional vegetation maps, indicating its applicability; 30% of the land area north of the treeline was identified as wetland while conventional maps recorded 1-7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For years, various indices of seasonal West African precipitation have served as useful predictors of the overall tropical cyclone activity in the Atlantic Ocean. Since the mid-1990s, the correlation unexpectedly deteriorated. In the present study, statistical techniques are developed to describe the nonstationary nature of the correlations between annual measures of Atlantic tropical cyclone activity and three selected West African precipitation indices (namely, western Sahelian precipitation in June-September, central Sahelian precipitation in June-September, and Guinean coastal precipitation in the preceding year's August-November period). The correlations between these parameters are found to vary over the period from 1921 to 2007 on a range of time scales. Additionally, considerable year-to-year variability in the strength of these correlations is documented by selecting subsamples of years with respect to various meteorological factors. Broadly, in years when the environment in the main development region is generally favorable for enhanced tropical cyclogenesis (e.g., when sea surface temperatures are high, when there is relatively little wind shear through the depth of the troposphere, or when the relative vorticity in the midtroposphere is anomalously high), the correlations between indices of West African monsoon precipitation and Atlantic tropical cyclone activity are considerably weaker than in years when the overall conditions in the region are less conducive. Other more remote climate parameters, such as the phase of the Southern Oscillation, are less effective at modulating the nature of these interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predictable in situ production of 230Th from the decay of uranium in seawater, and its subsequent removal by scavenging onto falling particles, provides a valuable tool for normalizing fluxes to the seafloor. We describe a new application, determination of the 232Th that dissolves in the water column and is removed to the seafloor. 232Th is supplied to the ocean in continental minerals, dissolution of which leads to a measurable standing stock in the water column. Sedimentary adsorbed 232Th/230Th ratios have the potential to provide a proxy for estimating the amount of dissolved material that enters the ocean, both today and in the past. Ten core top samples were treated with up to eight different leaching techniques in order to determine the best method for the separating adsorbed from lattice bound thorium. In addition, separate components of the sediments were analyzed to test whether clay dissolution was an important contribution to the final measurement. There was no systematic correlation between the strength of acid used in the leach and the measured 232Th/230Th ratios. In all cases clean foraminifera produced the same ratio as leaches on bulk sediment. In three out of five samples leaches performed on non-carbonate detritus in the <63 µm size fraction were also identical. Without additional water column data it is not yet clear whether there is a simple one to one correlation between the expected deep-water 232Th/230Th and that produced by leaching, especially in carbonate-rich sediments. However, higher ratios, and associated high 232Th adsorbed fluxes, were observed in areas with high expected detrital inputs. The adsorbed fraction was ~35-50% of the total 232Th in seven out of ten samples. Our 230Th normalized 232Th fluxes are reasonable by comparison to global estimates of detrital inputs to the ocean. In nine cases out of ten, the total 230Th-normalized 232Th flux is greater than predicted from the annual dust fall at each specific location, but lower than the average global detrital input from all sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic elevation of atmospheric carbon dioxide (pCO2) is making the oceans more acidic, thereby reducing their degree of saturation with respect to calcium carbonate (CaCO3). There is mounting concern over the impact that future CO2-induced reductions in the CaCO3 saturation state of seawater will have on marine organisms that construct their shells and skeletons from this mineral. Here, we present the results of 60 d laboratory experiments in which we investigated the effects of CO2-induced ocean acidification on calcification in 18 benthic marine organisms. Species were selected to span a broad taxonomic range (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida) and included organisms producing aragonite, low-Mg calcite, and high-Mg calcite forms of CaCO3. We show that 10 of the 18 species studied exhibited reduced rates of net calcification and, in some cases, net dissolution under elevated pCO2. However, in seven species, net calcification increased under the intermediate and/or highest levels of pCO2, and one species showed no response at all. These varied responses may reflect differences amongst organisms in their ability to regulate pH at the site of calcification, in the extent to which their outer shell layer is protected by an organic covering, in the solubility of their shell or skeletal mineral, and whether they utilize photosynthesis. Whatever the specific mechanism(s) involved, our results suggest that the impact of elevated atmospheric pCO2 on marine calcification is more varied than previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface wave tomography, using the fundamental Rayleigh wave velocities and those of higher modes between 1 and 4 and periods between 50 and 160 s, is used to image structures with a horizontal resolution of ~250 km and a vertical resolution of ~50 km to depths of ~300 km in the mantle. A new model, PM_v2_2012, obtained from 3×10**6 seismograms, agrees well with earlier lower resolution models. It is combined with temperature estimates from oceanic plate models and with pressure and temperature estimates from the mineral compositions of garnet peridotite nodules to generate a number of estimates of SV(P,T) based on geophysical and petrological observations alone. These are then used to estimate the unrelaxed shear modulus and its derivatives with respect to pressure and temperature, which agree reasonably with values from laboratory experiments. At high temperatures relaxation occurs, causing the shear wave velocity to depend on frequency. This behaviour is parameterised using a viscosity to obtain a Maxwell relaxation time. The relaxation behaviour is described using a dimensionless frequency, which depends on an activation energy E and volume Va. The values of E and Va obtained from the geophysical models agree with those from laboratory experiments on high temperature creep. The resulting expressions are then used to determine the lithospheric thickness from the shear wave velocity variations. The resolution is improved by about a factor of two with respect to earlier models, and clearly resolves the thick lithosphere beneath active intracontinental belts that are now being shortened. The same expressions allow the three dimensional variations of the shear wave attenuation and viscosity to be estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five sites were drilled along a transect of the Walvis Ridge. The basement rocks range in age from 69 to 71 m.y., and the deeper sites are slightly younger, in agreement with the sea-floor-spreading magnetic lineations. Geophysical and petrological evidence indicates that the Walvis Ridge was formed at a mid-ocean ridge at anomalously shallow elevations. The basement complex, associated with the relatively smooth acoustic basement in the area, consists of pillowed basalt and massive flows alternating with nannofossil chalk and limestone that contain a significant volcanogenic component. Basalts are quartz tholeiites at the ridge crest and olivine tholeiites downslope. The sediment sections are dominated by carbonate oozes and chalks with volcanogenic material common in the lower parts of the sediment columns. The volcanogenic sediments probably were derived from sources on the Walvis Ridge. Paleodepth estimates based on the benthic fauna are consistent with a normal crustal-cooling rate of subsidence of the Walvis Ridge. The shoalest site in the transect sank below sea level in the late Paleocene, and benthic fauna suggest a rapid sea-level lowering in the mid-Oligocene. Average accumulation rates during the Cenozoic indicate three peaks in the rate of supply of carbonate to the sea floor, that is, early Pliocene, late middle Miocene, and late Paleocene to early Eocene. Carbonate accumulation rates for the rest of the Cenozoic averaged 1 g/cm**2/kyr. Dissolution had a marked effect on sediment accumulation in the deeper sites, particularly during the late Miocene, Oligocene, and middle to late Eocene. Changes in the rates of accumulation as a function of depth demonstrate that the upper part of the water column had a greater degree of undersaturation with respect to carbonate during times of high productivity. Even when the calcium carbonate compensation depth (CCD) was below 4400 m, a significant amount of carbonate was dissolved at the shallower sites. The flora and fauna of the Walvis Ridge are temperate in nature. Warmer-water faunas are found in the uppermost Maastrichtian and lower Eocene sediments, with cooler-water faunas present in the lower Paleocene, Oligocene, and middle Miocene. The boreal elements of the lower Pliocene are replaced by more temperate forms in the middle Pliocene. The Cretaceous-Tertiary boundary was recovered in four sites drilled, with the sediments containing well-preserved nannofossils but poorly preserved foraminifera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3) available for marine calcification yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3]), and thus the saturation state of seawater with respect to aragonite. We investigated the relative importance of [HCO3] versus [CO3] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of ?ar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3] and [CO3]) and by pCO2 elevation at constant alkalinity (increased [HCO3], decreased [CO3]). Calcification after 2 weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3] whether ?ar was lowered by acid-addition or by pCO2 elevation-calcification did not follow total DIC or [HCO3]. Nevertheless, the calcification response to decreasing [CO3] was nonlinear. A statistically significant decrease in calcification was only detected between Omega aragonite = <2.5 and Omega aragonite = 1.1-1.5, where calcification of new recruits was reduced by 22-37% per 1.0 decrease in Omega aragonite. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing atmospheric pCO2 reduces the saturation state of seawater with respect to the aragonite, high-Mg calcite (Mg/Ca > 0.04), and low-Mg calcite (Mg/Ca < 0.04) minerals from which marine calcifiers build their shells and skeletons. Notably, these polymorphs of CaCO3 have different solubilities in seawater: aragonite is more soluble than pure calcite, and the solubility of calcite increases with its Mg-content. Although much recent progress has been made investigating the effects of CO2-induced ocean acidification on rates of biological calcification, considerable uncertainties remain regarding impacts on shell/skeletal polymorph mineralogy. To investigate this subject, eighteen species of marine calcifiers were reared for 60-days in seawater bubbled with air-CO2 mixtures of 409 ± 6, 606 ± 7, 903 ± 12, and 2856 ± 54 ppm pCO2, yielding aragonite saturation states of 2.5 ± 0.4, 2.0 ± 0.4, 1.5 ± 0.3, and 0.7 ± 0.2. Calcite/aragonite ratios within bimineralic calcifiers increased with increasing pCO2, but were invariant within monomineralic calcifiers. Calcite Mg/Ca ratios (Mg/CaC) also varied with atmospheric pCO2 for two of the five high-Mg-calcite-producing organisms, but not for the low-Mg-calcite-producing organisms. These results suggest that shell/skeletal mineralogy within some-but not all-marine calcifiers will change as atmospheric pCO2 continues rising as a result of fossil fuel combustion and deforestation. Paleoceanographic reconstructions of seawater Mg/Ca, temperature, and salinity from the Mg/CaC of well-preserved calcitic marine fossils may also be improved by accounting for the effects of paleo-atmospheric pCO2 on skeletal Mg-fractionation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least two transient events of extreme global warming occurred superimposed on the long-term latest Paleocene and early Eocene warming trend in the Paleocene-Eocene thermal maximum (PETM) (or ETM1 ~55.5 Ma) and the Elmo (or ETM2 ?53.6 Ma). Other than warmth, the best known PETM is characterized by (1) significant injection of 13C-depleted carbon into the ocean-atmosphere system, (2) deep-sea carbonate dissolution, (3) strong biotic responses, and (4) perturbations of the hydrological cycle. Documentation of the other documented and suspected "hyperthermals" is, as yet, insufficient to assess whether they are similar in nature to the PETM. Here we present and discuss biomagnetostratigraphic data and geochemical records across two lower Eocene successions deposited on a continental margin of the western Tethys: the Farra and Possagno sections in the Venetian pre-Alps. We recognize four negative carbon isotope excursions within chron C24. Three of these shifts correlate to known or suspected hyperthermals: the PETM, the Eocene thermal maximum 2 (~53.6 Ma), and the informally named "X event" (~52.5 Ma). The fourth excursion lies within a reverse subchron and occurred between the latter two. In the Farra section, the X event is marked by a ~0.6 per mil negative carbon isotope excursion and carbonate dissolution. Furthermore, the event exhibits responses among calcareous nannofossils, planktic foraminifera, and dinoflagellates that are similar to, though less intense than, those observed across the PETM. Sedimentological and quantitative micropaleontological data from the Farra section also suggest increased weathering and runoff as well as sea surface eutrophication during this event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.