23 resultados para Early Warning and Nowcasting Approaches for Water Quality in Riverine and Coastal Systems
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
Land-based aquaculture facilities often utilize additional bicarbonate sources such as commercial sea salts that are designed to boost alkalinity in order to buffer seawater against reductions in pH. Despite these preventative measures, many facilities are likely to face occasional reductions in pH and corresponding reductions in carbonate saturation states due to the accumulation of metabolic waste products. We investigated the impact of reduced carbonate saturation states (Omega Ca, Omega Ar) on embryonic developmental rates, larval developmental rates, and echinoplutei skeletal morphometrics in the common edible sea urchin Lytechinus variegatus under high alkalinity conditions. Commercial artificial seawater was bubbled with a mixture of air and CO2 gas to reduce the carbonate saturation state. Rates of embryonic and larval development were significantly delayed in both the low and extreme low carbonate saturation state groups relative to the control at a given time. Although symmetry of overall skeletal body lengths was not affected, allometric relationships were significantly different between treatment groups. Larvae reared under ambient conditions had significantly greater postoral arm and overall body lengths relative to body lengths than larvae grown under extreme low carbonate saturation state conditions, indicating that extreme changes in the carbonate system affected not only developmental rates but also larval skeletal shape. Reduced rates of embryonic development and delayed and altered larval skeletal growth are likely to negatively impact larval culturing of L. variegatus in land-based, intensive culture situations where calcite and aragonite saturation states are lowered by the accumulation of metabolic waste products.
Resumo:
The dataset provides detailed information on the study that was conducted in Lahore's 7 major towns. The sample was taken from 472 tubewells and analyzed for major cations and anions using APHA 2012 techniques as explained herein. Besides, E.coli determination was done to check for microbial contamination. The data includes results from PHREEQC modeling of As(III)/ As(V) species and saturation indices as well as Aquachem's computed hydrochemical water facies. The WHO (2011) and EPA standards included in Aquachem identified the parameters that where in violation. Bicarbonates dominated the groundwater types with 50.21% of the samples exceeding the EPA maximum permissible limit of 250 mg/L in drinking water. Similarly, 30.51% of the samples had TDS values greater than 500 mg/L while 85.38 % of the samples exceed 10 µg/L threshold limit value of arsenic. Also, instances of high magnesium hazard values were observed which requires constant assessment if the groundwater is used for irrigation. Higher than 50% MH values are detrimental to crops which may reduce the expected yields. The membrane filtration technique using m-Endo Agar indicated that 3.59% samples had TNC (too numerous to count) values for E.coli while 5.06% showed values higher than 0 cfu/ 100 ml acceptable value in drinking water. Any traces of E-coli in a groundwater sample indicate recent fecal contamination. Such outcomes signify presence of enteric pathogens. If the groundwater is not properly dosed with disinfectants it may cause harm to human health. It is concluded that more studies are needed and proper groundwater management implement to safeguard the lives of communities that depend solely on groundwater in the city.
Resumo:
The CoastColour project Round Robin (CCRR) project (http://www.coastcolour.org) funded by the European Space Agency (ESA) was designed to bring together a variety of reference datasets and to use these to test algorithms and assess their accuracy for retrieving water quality parameters. This information was then developed to help end-users of remote sensing products to select the most accurate algorithms for their coastal region. To facilitate this, an inter-comparison of the performance of algorithms for the retrieval of in-water properties over coastal waters was carried out. The comparison used three types of datasets on which ocean colour algorithms were tested. The description and comparison of the three datasets are the focus of this paper, and include the Medium Resolution Imaging Spectrometer (MERIS) Level 2 match-ups, in situ reflectance measurements and data generated by a radiative transfer model (HydroLight). The datasets mainly consisted of 6,484 marine reflectance associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: Total Suspended Matter (TSM) and Chlorophyll-a (CHL) concentrations, and the absorption of Coloured Dissolved Organic Matter (CDOM). Inherent optical properties were also provided in the simulated datasets (5,000 simulations) and from 3,054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three datasets are compared. Match-up and in situ sites where deviations occur are identified. The distribution of the three reflectance datasets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.
Resumo:
Nutrient addition experiments were performed during the austral summer in the Amundsen Sea (Southern Ocean) to investigate the availability of organically bound iron (Fe) to the phytoplankton communities, as well as assess their response to Fe amendment. Changes in autotrophic biomass, pigment concentration, maximum photochemical efficiency of photosystem II, and nutrient concentration were recorded in response to the addition of dissolved free Fe (DFe) and Fe bound to different model ligands. Analysis of pigment concentrations indicated that the autotrophic community was dominated by the prymnesiophyte Phaeocystis antarctica throughout most of the Amundsen Sea, although diatoms dominated in two experiments conducted in the marginal ice zone. Few significant differences in bulk community biomass (particulate organic carbon, nitrogen, and chlorophyll a) were observed, relative to the controls, in treatments with Fe added alone or bound to the ligand phytic acid. In contrast, when Fe was bound to the ligand desferrioxamine B (DFB), decreases in the bulk biomass indices were observed. The concentration of the diatom accessory pigment fucoxanthin showed little response to Fe additions, while the concentration of the P. antarctica-specific pigment, 19'-hexanoyloxyfucoxanthin (19'-hex), decreased when Fe was added alone or bound to the model ligands. Lastly, differences in the nitrate:phosphate (NO3- :PO4**3-) utilization ratio were observed between the Fe-amended treatments, with Fe bound to DFB resulting in the lowest NO3- :PO4**3- uptake ratios (~ 10) and the remaining Fe treatments having higher NO3- :PO4**3- uptake ratios (~ 17). The data are discussed with respect to glacial inputs of Fe in the Amundsen Sea and the bioavailability of Fe. We suggest that the previously observed high NO3- :PO4**3- utilization ratio of P. antarctica is a consequence of its production of dissolved organic matter that acts as ligands and increases the bioavailability of Fe, thereby stimulating the uptake of NO3-.