361 resultados para Early Miocene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope data are compared with relative abundances of selected planktic foraminifera through a ca. 15 m interval at DSDP Site 593 (Tasman Sea, southwest Pacific, 40°S) in which there are prominent changes in population sizes, as well as several evolutionary events. We focus on the relation between faunal and climatic histories. The base of early Miocene oxygen isotope Zone Mi1b (uppermost planktic foraminiferal Zone N.6) is identified from closesampled (c. 14 kyr) isotope records of Globigerina woodi and Cibicides kullenbergi. Chronostratigraphic interpolations, using the first occurrences of Globorotalia praescitula, G. mimea and Praeorbulina curva give an age estimate of ca. 18.4 Ma (cf. 18.1 -18.3 Ma for the base of the zone at DSDP Site 608 (type level, north Atlantic, 43°N) ). Another significant benthic delta18O enrichment event, informally designated as the base of zone "Mi1c", is identified 10 m higher in the sequence at ca. 17.8 Ma. Populations of Globoquadriau dehiscens and Globigerinoides trilobus (inferred to be near the southern margin of their distributions) either reduced considerably or withdrew, particularly in the vicinity of zone "Mi1c". A bioseries linking Globorotalia incognita with G. zealandica developed following the benthic delta18O enrichment spike at the base of Zone Mi1b; the latter species became extinct (at least regionally) just above the base of zone "Mi1c". In contrast, the apparently opportunistic Globorotlia praescitula increased dramatically in abundance at this time; there were also transformations in its architecture, leading to the evolutionary appearance of G. miozea. While planktic foraminifera abundances often do not closely covary with the detailed isotope records and tend to be more stable through time, the near coincidence of evolutionary and biogeographic events with isotopic events suggests at least indirect adaptive responses to climatic changes. Early Miocene middle-latitude planktic foraminiferal evolution, biogeography, and biostratigraphy, may be intimately connected with climatic history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few astronomically calibrated high-resolution (<=5 kyr) climate records exist that span the Oligocene-Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ~13-Myr interval of the Oligo-Miocene (30.1-17.1 Ma) at high resolution (~3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ~3.4 m and ~0.9 m, which correspond to 405- and ~110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, d18O and d13C are interpreted to coincide with ~110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (~2.4-Myr) are marked by recurrent episodes of high-amplitude ~110-kyr d18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic d18O and especially d13C signals, are more pronounced during ~2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ~110-kyr d18O cycles and the ~1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ~2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated Oligocene and early Miocene benthic foraminiferal faunas (> 105 µm in size) from Ocean Drilling Program (Leg 199) Site 1218 (4826 m water depth and ~3300 to ~4000 m paleo-water depth) and Site 1219 (5063 m water depth and ~4200 to ~4400 m paleo-water depth) to understand the response of abyssal benthic foraminifera to mid-Oligocene glacial events in the eastern Equatorial Pacific Ocean. Two principal factor assemblages were recognized. The Factor 1 assemblage (common Nuttallides umbonifer) is related to either an influx of the Southern Component Water (SCW), possibly carbonate undersaturated, or a decrease in seasonality of the food supply from the surface ocean. The Factor 2 assemblage is characterized by typical deep-sea taxa living under variable trophic conditions, possibly with a seasonal component in food supply. The occurrence of abyssal benthic foraminifera faunas during the mid-Oligocene depends on either the effect of SCW or the seasonality of food resources. The Factor 1 assemblage was most common near 76Ol-C11r, 73Ol-C10rn and 67Ol-C9n (ca. 30.2, 29.1 and 26.8 Ma respectively by Pälike et al. (2006, doi:10.1126/science.1133822)). This indicates that the effect of SCW increased or the seasonal input of food from the surface ocean to benthic environments was weakened close to these glacial events. In contrast, the huge export flux of small biogenic carbonate particles close to these glacial events might be responsible for carbonate-rich sediments buffering carbonate undersaturation. Changes in deep-water masses or the periodicity of food supply from the surface ocean and variation in surface carbonate production affected by orbital forcing had an impact on the mid-Oligocene faunas of abyssal benthic foraminifera around the intervals of glacial events in the eastern Equatorial Pacific Ocean. The Factor 1 assemblage decreased sharply at ? 30 Ma (29.8 Ma by Pälike et al. (2006), 30.0 Ma by CK95) and returned to dominance after ? 29 Ma (28.6 Ma by Pälike et al. (2006), 28.8 Ma by CK95). It is likely that the effect of SCW (possibly carbonate undersaturated) has intensified since the late Oligocene. The faunal transition of benthic foraminifera in the eastern Equatorial Pacific Ocean at ~29 Ma might be attributable to the influence of Northern Component Water (NCW) input to the Southern Ocean and the subsequent formation of SCW at about that time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep Sea Drilling Project Site 563, located on the west flank of the northern Mid-Atlantic Ridge, recovered a long Miocene section from which magnetostratigraphic and isotopic stratigraphy are available. Quantitative analyses of calcareous nannofossil assemblages have been performed in the Lower and Middle Miocene sediments from Site 563. The abundance patterns of the identified species allow us to determine several bioevents for this time interval. The recognized biohorizons, related to the available magnetostratigraphy, provide new data on the biostratigraphic value of many species and on the synchroneity of the events over a wide geographic area. Relations with the oxygen isotope stratigraphy are also reported. Sphenolith distribution is examined in particular detail due to their biostratigraphic importance in the Early Miocene. In particular the recently described species Sphenolithus procerus, Sphenolithus tintinnabulum and Sphenolithus multispinatus can be useful to subdivide the Lower Miocene zones NN2 and NN3. A large variety of Reticulofenestra pseudoumbilicus has been identified within zones NN6 and NN7.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.