35 resultados para EXTREME PRECIPITATION EVENTS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study focuses on the vertical distribution of authigenic carbonates (aragonite and high Mg-calcite) in the form of finely disseminated precipitates as well as massive carbonate concretions present in and above gas hydrate bearing sediments of the Northern Congo Fan. Analyses of Ca, Mg, Sr and Ba in pore water, bulk sediments and authigenic carbonates were carried out on gravity cores taken from three pockmark structures (Hydrate Hole, Black Hole and Worm Hole). In addition, a background core was retrieved from an area not influenced by fluid seepage. Pore water Sr/Ca and Mg/Ca ratios are used to reveal the current depths of carbonate formation as well as the mineralogy of the authigenic precipitates. The Sr/Ca and Mg/Ca ratios of bulk sediments and massive carbonate concretions were applied to infer the presence and depth distribution of authigenic aragonite and high Mg-calcite, based on the approach presented by Bayon et al. [Bayon et al. (2007). Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241(1-4), 93-109, doi:10.1016/j.margeo.2007.03.007]. We show that the approach developed by Bayon et al. (2007) for sediments of cold seeps of the Niger Delta is also suitable to identify the mineralogy of authigenic carbonates in pockmark sediments of the Congo Deep-Sea Fan. We expand this approach by combining interstitial with solid phase Sr/Ca and Mg/Ca ratios, which demonstrate that high Mg-calcite is the predominant authigenic carbonate that currently forms at the sulfate/methane reaction zone (SMRZ). This is the first study which investigates both solid phase and pore water signatures typical for either aragonite or high Mg-calcite precipitation for the same sediment cores and thus is able to identify active and fossil carbonate precipitation events. At all investigated pockmark sites fossil horizons of the SMRZ were deduced from high Mg-calcite located above and below the current depths of the SMRZ. Additionally, aragonite enrichments typical for high seepage rates were detected close to the sediment surface at these sites. However, active precipitation of aragonite as indicated by pore water characteristics only occurs at the Black Hole site. Dissolved and solid phase Ba concentrations were used to estimate the time the SMRZ was fixed at the current depths of the diagenetic barite fronts. The combined pore water and solid phase elemental ratios (Mg/Ca, Sr/Ca) and Ba concentrations allow the reconstruction of past changes in methane seepage at the investigated pockmark sites. At the Hydrate Hole and Worm Hole sites the time of high methane seepage was estimated to have ceased at least 600 yr BP. In contrast, a more recent change from a high flux to a more dormant stage must have occurred at the Black Hole site as evidenced by active aragonite precipitation at the sediment surface and a lack of diagenetic Ba enrichments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface sediment samples from the Norwegian-Greenland Sea were investigated to reconstruct the spatial distribution of recent carbonate dissolution on the seafloor. Additionally, carbonate dissolution records of Ocean Drilling Program sites 985 and 987 are presented to outline the development of Pleistocene carbonate preservation. Today, well-preserved carbonate tests can be observed along the inflow of warm Atlantic surface water, extending as far as into the northernmost Norwegian-Greenland Sea. Increased dissolution is indicated along the continental margins and in the deepest parts of the Greenland Basin. Factors favoring carbonate preservation were found to be supersaturation of the water column with respect to calcium carbonate, high carbonate rain and probably excess alkalinity of bottom waters supplied by the arctic river discharge. Supralysoklinal dissolution is most important for recent carbonate dissolution in the Norwegian-Greenland Sea, whereas the deepest parts of the Greenland Basin reaches the calcite saturation horizon. Pleistocene dissolution records show some prominent peaks of extreme carbonate dissolution. During the Brunhes chron, carbonate dissolution maxima can be related to meltwater pulses, which probably inhibited deep-water formation in the Norwegian-Greenland Sea during deglaciation events. Long-term severe carbonate dissolution is evident during the late Matuyama chron. This can be probably related to low carbonate rain, due to a more eastwards located East Greenland Current and the nearly absence of the not yet polar adapted Neogloboquadrina pachyderma sin. during that period. Extreme dissolution events during the late Matuyama indicate strongly reduced deep-water formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from 14C and 10Be records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annually laminated (varved) lake sediments with intercalated detrital layers resulting from sedimentary input by runoff events are ideal archives to establish precisely dated records of past extreme runoff events. In this study, the mid- to late Holocene varved sediments of Lake Mondsee (Upper Austria) were analysed by combining sedimentological, geophysical and geochemical methods. This approach allows to distinguish two types of detrital layers related to different types of extreme runoff events (floods and debris flows) and to detect changes in flood activity during the last 7100 years. In total, 271 flood and 47 debris flow layers, deposited during spring and summer, were identified, which cluster in 18 main flood episodes (FE 1-18) with durations of 30-50 years each. These main flood periods occurred during the Late Neolithic (7100-7050 vyr BP and 6470-4450 vyr BP), the late Bronze Age and the early Iron Age (3300-3250 and 2800-2750 vyr BP), the late Iron Age (2050-2000 vyr BP), throughout the Dark Ages Cold Period (1500-1200 vyr BP), and at the end of the Medieval Warm Period and the Little Ice Age (810-430 vyr BP). Summer flood episodes in Lake Mondsee are generally more abundant during the last 1500 years, often coinciding with major advances of alpine glaciers. Prior to 1500 vyr BP, spring/summer floods and debris flows are generally less frequent, indicating a lower number of intense rainfall events that triggered erosion. In comparison with the increase of late Holocene flood activity in western and northwestern (NW) Europe, commencing already as early as 2800 yr BP, the hydro-meteorological shift in the Lake Mondsee region occurred much later. These time lags in the onset of increased hydrological activity might be either due to regional differences in atmospheric circulation pattern or to the sensitivity of the individual flood archives. The Lake Mondsee sediments represent the first precisely dated and several millennia long summer flood record for the northeastern (NE) Alps, a key region at the climatic boundary of Atlantic, Mediterranean and East European air masses aiding a better understanding of regional and seasonal peculiarities of flood occurrence under changing climate conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variations in Mg/Ca-based sea surface temperature and oxygen isotope ratio (d18O) of the surface water in the northern East China Sea (ECS) were reconstructed with high resolution during the last 18 kyr using planktic foraminifera. Millennial-scale variations between warmer, more saline surface water and cooler, less saline surface water were recognized during the early deglacial period and the Holocene, suggesting changes in the mixing ratio between the Kuroshio Water and the Changjiang Diluted Water. Stronger East Asian summer monsoon (EASM) precipitation events in south China are identified at 10.5, 8.8, 7.0, 5.3, 4.7, 2.9, 1.7, and 0.5 ka, based on sea surface salinity (SSS) records of the northern ECS. Weaker EASM precipitation events are also detected at 9.3, 8.3, 7.3, 6.0, 3.3, 2.3, 0.7, and 0.4 ka during the Holocene. These events agree with the maxima in d18O records of stalagmites from various parts of the Changjiang (Yangtze) River drainage. This agreement supports that our SSS record properly captures the millennial-scale dry (less EASM precipitation) events over the drainage basin of the Changjiang River during the Holocene. These dry events are also in good agreement with North Atlantic ice-rafted events, suggesting a teleconnection between North Atlantic climate and the EASM during the Holocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for 'pre-anthropogenic' greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Future warming is predicted to shift the Earth system into a mode with progressive increase and vigour of extreme climate events possibly stimulating other mechanisms that invigorate global warming. This study provides new data and modelling investigating climatic consequences and biogeochemical feedbacks that happened in a warmer world ~112 Myr ago. Our study focuses on the Cretaceous Oceanic Anoxic Event (OAE) 1b and explores how the Earth system responded to a moderate ~25,000 yr lasting climate perturbation that is modelled to be less than 1 °C in global average temperature. Using a new chronological model for OAE 1b we present high-resolution elemental and bulk carbon isotope records from DSDP Site 545 from Mazagan Plateau off NW Africa and combine this information with a coupled atmosphere-land-ocean model. The simulations suggest that a perturbation at the onset of OAE 1b caused almost instantaneous warming of the atmosphere on the order of 0.3 °C followed by a longer (~45,000 yr) period of ~0.8 °C cooling. The marine records from DSDP Site 545 support that these moderate swings in global climate had immediate consequences for African continental supply of mineral matter and nutrients (phosphorous), subsequent oxygen availability, and organic carbon burial in the eastern subtropical Atlantic, however, without turning the ocean anoxic. The match between modelling results and stratigraphic isotopic data support previous studies [summarized in Jenkyns 2003, doi:10.1098/rsta.2003.1240] in that methane emission from marine hydrates, albeit moderate in dimension, may have been the trigger for OAE 1b, though we can not finally rule out alternative mechanisms. Following the hydrate mechanism a total of 1.15 * 10**18 g methane carbon (delta13C=-60 ?), equivalent to about 10% to the total modern gas hydrate inventory, generated the delta13Ccarb profile recorded in the section. Modelling suggests a combination of moderate-scale methane pulses supplemented by continuous methane emission at elevated levels over ~25,000 yr. The proposed mechanism, though difficult to finally confirm in the geological past, is arguably more likely to occur in a warmer world and apparently perturbs global climate and ocean chemistry almost instantaneously. This study shows that, once set-off, this mechanism can maintain Earth's climate in a perturbed mode over geological time leading to pronounced changes in regional climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mediterranean Sea hydrology at the time of the Heinrich formation in the North Atlantic Ocean was analyzed by comparing sea surface temperatures (SSTs) and oxygen isotope composition of seawater (dw) changes during the past 75 kyr in two marine cores. These were compared to the palynological variations derived in the Mediterranean Sea core. During the last glacial the two oceanic SST records show similar and synchronous patterns, with several long-term cooling periods, ending by abrupt SST increases. At the time of the Heinrich events, cold SSTs and low salinity prevailed in the Mediterranean Sea. The freshwater budget was similar to the modern one, permitting the presence of a mixed forest on the Mediterranean borderlands. The post-Heinrich periods are marked by a freshwater budget decrease, limiting oak and fir tree growth in the Mediterranean region. Increase of precipitation or reduction of evaporation is observed before the Heinrich episode, and is associated with a well-developed mixed Mediterranean forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as epsilonNd(0)) throughout the last 30 ka. Whereas the homogeneous epsilonNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the epsilonNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diamond dust (DD) refers to tiny ice crystals that form frequently in the Polar troposphere under clear sky conditions. They provide surfaces for chemical reactions and scatter light. We have measured the specific surface area (SSA) of DD at Barrow in March-April 2009. We have also measured its chemical composition in mineral and organic ions, dissolved organic carbon (DOC), aldehydes, H2O2, and the absorption spectra of water-soluble chromophores. Mercury concentrations were also measured in spring 2006, when conditions were similar. The SSA of DD ranges from 79.9 to 223 m**2/kg . The calculated ice surface area in the atmosphere reaches 11000 (±70%) µm**2/cm**3, much higher than the aerosol surface area. However, the impact of DD on the downwelling and upwelling light fluxes in the UV and visible is negligible. The composition of DD is markedly different from that of snow on the surface. Its concentrations in mineral ions are much lower, and its overall composition is acidic. Its concentrations in aldehydes, DOC, H2O2 and mercury are much higher than in surface snows. Our interpretation is that DOC from the oceanic surface microlayer, coming from open leads in the ice off of Barrow, is taken up by DD. Active chemistry in the atmosphere takes place on DD crystal surfaces, explaining its high concentrations in aldehydes and mercury. After deposition, active photochemistry modifies DD composition, as seen from the modifications in its absorption spectra and aldehyde and H2O2 content. This probably leads to the emissions of reactive species to the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.