22 resultados para ELASTIC STOCKINGS
(Table 1) Compressional and shear wave velocities and elastic constants of DSDP Hole 83-504B basalts
Resumo:
Compressional and shear wave velocities at confining pressures to 6 kb, densities, and porosities were measured for 32 samples obtained from 836 to 1350 m below seafloor (BSF) in Hole 504B, the section drilled on Leg 83 of the Deep Sea Drilling Project. These data in combination with similar measurements on 28 basalt samples from the section from 274.5 to 836 m, drilled on Legs 69 and 70, provide a comprehensive set of physical property data for over 1000 m of oceanic crust. The velocities, densities, and porosities measured in the laboratory exhibit greater variability in the upper portion of the hole. In general, compressional and shear wave velocities and densities increase with depth, reaching average values at 1 kbar of Vp = 6.45 km/s, Ks = 3.45 km/s and p = 2.94 g/cm3 within the sheeted dike section. Porosities decrease with depth to values generally less than 1% near the bottom of the hole
Resumo:
The Integrated OceanDrilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high-resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10-30 m/Myr) and high permeability values (10**-15 -10**-18 m**2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One-dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifes the Opal A-C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source.However, the combined rat of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A-C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.
Resumo:
This study is based on rock mechanical tests of samples from platform carbonate strata to document their petrophysical properties and determine their potential for porosity loss by mechanical compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested at vertical effective stress, sigma1', of 0-70 MPa, as lateral strain was kept equal to zero. The samples were deposited as bioclastic facies in platform-top settings having paleo-water depths of <10-90 m. They were variably cemented with low-Mg calcite and five of the samples were dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8-46%. Ten samples tested under dry conditions had up to 0.22% strain at sigma1' = 50 MPa, whereas six samples tested saturated with brine, under drained conditions, had up to 0.33% strain. The yield strength was reached in five of the plugs. The measured strains show an overall positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s. Poisson coefficient is 0.20-0.33 and Young's modulus at 30 MPa ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse, indicating propagation of microcracks. Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite cementation. The small strains observed experimentally at 50 MPa indicate that little mechanical compaction would occur at deeper burial. However, as these rocks are unlikely to preserve their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by chemical compaction and cementation.