25 resultados para EDGE FAULTS
Resumo:
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).
Resumo:
Thirty-four sediment and mudline temperatures were collected from six drill holes on ODP Leg 110 near the toe of the Barbados accretionary complex. When combined with thermal conductivity measurements these data delineate the complicated thermal structure on the edge of this convergent margin. Surface heat-flow values from Leg 110 (calculated from geothermal gradients forced through the bottom-water temperature at mudline) of 92 to 192 mW/m**2 are 80% to 300% higher than values predicted by standard heat flow vs. age models for oceanic crust, but are compatible with earlier surface measurements made at the same latitude. Measured heat flow tends to decrease downhole at four sites, suggesting the presence of heat sources within the sediments. These results are consistent with the flow of warm fluid through the complex along sub-horizontal, high-permeability conduits, including thrust faults, the major decollement zone, and sandy intervals. Simple calculations suggest that this flow is transient, occurring on time scales of tens to tens of thousands of years. High heat flow in the vicinity of 15°30'N and not elsewhere along the deformation front suggests that the Leg 110 drill sites may be situated over a fluid discharge zone, with dewatering more active here than elsewhere along the accretionary complex.