244 resultados para ECHINOIDEA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrobenthic associations were investigated at 29 sampling stations with a semi-quantitative Agassiz trawl, ranging from the South Patagonian Icefield to the Straits of Magellan in the South Chilean fjord system. A total of 1,895 individuals belonging to 131 species were collected. 19 species belong to colonial organisms, mainly Bryozoa (17 species) and Octocorallia (2 species). The phylum Echinodermata was the most diverse in species number (47 species), with asteroids (25 species) and ophiuroids (13 species) being the best represented within this taxon. Polychaeta was the second dominant group in terms of species richness (46 species). Multidimensional scaling ordination (MDS) separated two station groups, one related to fjords and channels off the South Patagonian Icefield and the second one to stations surrounding the Straits of Magellan. 45 species account for 90% of the dissimilarity between these two groups. These differences can mainly be explained by the influence of local environmental conditions determined by processes closely related to the pres- ence/absence of glaciers. Abiotic parameters such as water depth, type of sediment and chemical features of the superficial sediment were not correlated with the numbers of individuals caught by the Agassiz trawl in each group of sampling stations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to examine the long-term development of offshore macrozoobenthic soft-bottom communities of the German Bight, four representative permanent stations (MZB-SSd, -FSd, -Slt, -WB) have been sampled continuously since 1969. Inter-annual variability and possible long-term trends were analysed based on spring-time samples from 1969 until 2000. This is part of the ecological long-term series of the AWI and is supplemented by periodic large-scale mapping of the benthos. The main factors influencing the development of the benthic communities are biological interactions, climate, food supply (eutrophication) and the disturbance regime. The most frequent disturbances are sediment relocations during strong storms or by bottom trawling, while occasional oxygen deficiencies and extremely cold winters are important disturbance events working on a much larger scale. Benthic communities at the sampling stations show a large inter-annual variability combined with a variation on a roughly decadal scale. In accordance with large-scale system shifts reported for the North Sea, benthic community transitions occurred between roughly the 1970ies, 80ies and 90ies. The transitions between periods are not distinctly marked by strong changes but rather reflected in gradual changes of the species composition and dominance structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic elevation of atmospheric carbon dioxide (pCO2) is making the oceans more acidic, thereby reducing their degree of saturation with respect to calcium carbonate (CaCO3). There is mounting concern over the impact that future CO2-induced reductions in the CaCO3 saturation state of seawater will have on marine organisms that construct their shells and skeletons from this mineral. Here, we present the results of 60 d laboratory experiments in which we investigated the effects of CO2-induced ocean acidification on calcification in 18 benthic marine organisms. Species were selected to span a broad taxonomic range (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida) and included organisms producing aragonite, low-Mg calcite, and high-Mg calcite forms of CaCO3. We show that 10 of the 18 species studied exhibited reduced rates of net calcification and, in some cases, net dissolution under elevated pCO2. However, in seven species, net calcification increased under the intermediate and/or highest levels of pCO2, and one species showed no response at all. These varied responses may reflect differences amongst organisms in their ability to regulate pH at the site of calcification, in the extent to which their outer shell layer is protected by an organic covering, in the solubility of their shell or skeletal mineral, and whether they utilize photosynthesis. Whatever the specific mechanism(s) involved, our results suggest that the impact of elevated atmospheric pCO2 on marine calcification is more varied than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study on invertebrate communities in East- and West-Greenland shelf waters was embedded in a fisheries survey carried out during the 379th expedition of the German fisheries vessel Walther Herwig III of the Thünen Institute of Sea Fisheries, Hamburg, Germany. The aim of the study was a coarse classification of the bycatch comprising macrobenthic organisms. On the one hand the marine ecosystem of this area provides food for commercially valuable fish stocks and plays, potentially an important role in the remineralisation of nutrients. On the other hand it experiences stress by traditional bottom trawling as well as anthropogenic and natural climate variability. As a consequence the study can provide a baseline to detect further changes in the composition of this component of a sub-arctic marine ecosystem.