26 resultados para Dubois, Guillaume, cardinal, 1656-1723.
Resumo:
Significant uncertainties persist in the reconstruction of past sea surface temperatures in the eastern equatorial Pacific, especially regarding the amplitude of the glacial cooling and the details of the post-glacial warming. Here we present the first regional calibration of alkenone unsaturation in surface sediments versus mean annual sea surface temperatures (maSST). Based on 81 new and 48 previously published data points, it is shown that open ocean samples conform to established global regressions of Uk'37 versus maSST and that there is no systematic bias from seasonality in the production or export of alkenones, or from surface ocean nutrient concentrations or salinity. The flattening of the regression at the highest maSSTs is found to be statistically insignificant. For the near-coastal Peru upwelling zone between 11-15°S and 76-79°W, however, we corroborate earlier observations that Uk'37 SST estimates significantly over-estimate maSSTs at many sites. We posit that this is caused either by uncertainties in the determination of maSSTs in this highly dynamic environment, or by biasing of the alkenone paleothermometer toward El Niño events as postulated by Rein et al. (2005).
Resumo:
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.