304 resultados para Dissolved solids


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite its extreme aridity the Badain Jaran Desert is rich in groundwater. In the southeastern part of this desert it is characterized by coexistence of high megadunes and a great number of lakes. Deuterium and oxygen 18 isotope compositions as well as hydrochemistry of groundwater, lake water, soil water and river water were investigated in detail to gain an insight into their relationships and the origin of the groundwater. The results show that the groundwater and the lake water are genetically related, but unrelated to local precipitation and the leakage of Heine River at the northern slope of the Qilian mountain. dD and d18O values of deep soil water (deeper than 40 cm) and groundwater plot on the same evaporation line E11, which shows that they have the same recharge source. The point of intersection between E11 and LMWL suggests that the groundwater originates from a water resource, which has a weighted mean value that is lighter by some 6 per mil d18O than local precipitation in Badain Jaran Desert. 3H data of water samples show that the groundwater in the Badain Jaran Desert originates from water recharged after the nuclear test. The deep fault zone underground maybe a water circulation channel based on helium analysis of groundwater. The result has guiding significance to rational exploitation and utilization of the local groundwater.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frost flowers, intricate featherlike crystals that grow on refreezing sea ice leads, have been implicated in lower atmospheric chemical reactions. Few studies have presented chemical composition information for frost flowers over time and many of the chemical species commonly associated with Polar tropospheric reactions have never been reported for frost flowers. We undertook this study on the sea ice north of Barrow, Alaska to quantify the major ion, stable oxygen and hydrogen isotope, alkalinity, light absorbance by soluble species, organochlorine, and aldehyde composition of seawater, brine, and frost flowers. For many of these chemical species we present the first measurements from brine or frost flowers. Results show that major ion and alkalinity concentrations, stable isotope values, and major chromophore (NO3- and H2O2) concentrations are controlled by fractionation from seawater and brine. The presence of these chemical species in present and future sea ice scenarios is somewhat predictable. However, aldehydes, organochlorine compounds, light absorbing species, and mercury (part 2 of this research and Sherman et al. (2012, doi:10.1029/2011JD016186)) are deposited to frost flowers through less predictable processes that probably involve the atmosphere as a source. The present and future concentrations of these constituents in frost flowers may not be easily incorporated into future sea ice or lower atmospheric chemistry scenarios. Thinning of Arctic sea ice will likely present more open sea ice leads where young ice, brine, and frost flowers form. How these changing ice conditions will affect the interactions between ice, brine, frost flowers and the lower atmosphere is unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Up to 2.3 m long sediment sequences were recovered from the deepest part of Lake Hoare in Taylor Valley, southern Victoria Land, Antarctica. Sedimentological, biogeochemical, and mineralogical analyses revealed a high spatial variability of these parameters in Lake Hoare. Five distinct lithological units were recognized. Radiocarbon dating of bulk organic carbon samples from the sediment sequences yielded apparently too old ages and significant age reversals, which prevented the establishment of reliable age-depth models. However, cross correlation of the sedimentary characteristics with those of sediment records from neighbouring Lake Fryxell indicates that the lowermost two units of the Lake Hoare sediment sequences were probably deposited during the final phase of proglacial Lake Washburn, which occupied Taylor Valley during the late Pleistocene and early Holocene. High amounts of angular gravel and the absence of fine-grained material imply a complete desiccation with subaerial conditions in the Lake Hoare basin in the middle of the Holocene. The late Holocene (< c. 3300 calendar yr BP) is characterized by the establishment of environmental conditions similar to those existing today. A late Holocene desiccation event, such as proposed in former studies, is not indicated in the sediment sequences recovered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Semarang City, groundwater has been exploited as a natural resource since 1841. The groundwater exploited in deep wells is concentrated in confined aquifers. The previous hydrogeological model was developed in one unit of aquifer and refined then by using several hydrostratigraphical units following a regional hydrogeological map without any further analysis. At present, there is a lack of precise hydrogeological model which integrates geological and hydrogeological data, in particular for multiple aquifers in Semarang. Thus, the aim of this paper is to develop a hydrogeological model for the multiple aquifers in Semarang using an integrated data approach. Groundwater samples in the confined aquifers have been analyzed to define the water type and its lateral distribution. Two hydrogeological cross sections were then created based on several borelog data to define a hydrostratigraphical unit (HSU). The HSU result indicates the hydrogeological model of Semarang consists of two aquifers, three aquitards, and one aquiclude. Aquifer 1 is unconfined, while Aquifer 2 is confined. Aquifer 2 is classified into three groups (2a, 2b, and 2c) based on analyses of major ion content and hydrostratigraphical cross sections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under defined laboratory and field conditions, the investigation of percolating water through soil columns (podsol, lessive and peat) down to groundwater table shows that the main factors which control the chemical characteristics of the percolates are: precipitation, evaporation, infiltration rate, soil type, depth and dissolved organic substances. Evaporation and percolation velocity influences the Na+, SO4**2- and Cl- concentrations. Low percolation velocity leads also to longer percolation times and water logging in less permeable strata, which results in lower Eh-values and higher CO2-concentrations due to low gas exchange with the atmosphere. Ca2+ and Mg2+ carbonate concentration depends on soil type and depth. Metamorphism and decomposition of organic substances involve NO3 reduction and K+, Mg2+, SO4**2-, CO2, Fe2+,3+ transport. The analytical data were evaluated with multi variate statistical methods.