35 resultados para Devonian
Resumo:
The name "Schlagwasser breccia" is a synopsis of several debris flows in the Warstein area, which can be derived from the Warstein carbonate platform and the Scharfenberg reef. Though only locally developed, the breccia is important for the understanding of paleogeography and sedimentology in the Eastern Sauerland. Considering this breccia some gravitational-resedimentary slide movements between a high, consisting of reef carbonates, and a basin with flinz beds can be pointed out. From the uppermost Middle Devonian to the lowermost Lower Carboniferous several slides yielded the sedimentary components building up the 30 to 50 m thick polymict breccia. Some breccias were redeposited repeatedly as can be verified by different conodont maxima in single samples. Supplying area was the western part of the Warstein high, from which the slide masses glided off to the East and Southeast, more seldom to the West and Westsouthwest. All conodont zones from the upper Middle Devonian up to the lowermost Carboniferous could be identified in the Schlagwasser breccia. Therefore, an uninterrupted continuous sedimentation must have been prevalent in the supplying area; today this area nearly is denuded of flinz beds and cephalopod limestones. The slide masses spread transgressively to the East up to a substratum consisting of different units as massive limestone, flinz beds and cephalopod limestone; they are overlapped by Hangenberg beds, alum schists and siliceous rocks of the Lower Carboniferous. Parts of the substratum were transported during the progress of the slide masses. Proximal and distal parts of the flow masses can be distinguished by the diameter of the pebbles. Graded bedding and banking structures are marked only rarely. Way of transport was up to 3 km. Differently aged slide masses do not always overlap, but are placed side by side, too. Usually the slide masses do not spread out upon a greater area during sedimentation, but form closely limited debris flows. Synsedimentary fracturing and tilting of the reef platform, epirogenetic movements and seaquakes caused the slides. The entire formation period of the breccia includes about 20 millions of years. The longevity of the events points to solid paleomorphological situations around the eastern margin of the carbonate platform.
Resumo:
An 823 m thick glaciomarine Cenozoic section sitting unconformably on the Lower Devonian Beacon Supergroup was recovered in CRP-3. This paper reviews the chronostratigraphical constraints for the Cenozoic section. Between 3 and 480.27 mbsf 23 unconformity bounded cycles of sediment were recorded. Each unconformity is thought to represent a hiatus of uncertain duration. Four magnetozones have been recognised from the Cenozoic section. The record is complex with several 'tiny wiggles'' recorded throughout. Biostratigraphical or Sr ages, which could be used to link these magnetozones to the magnetic polarity time scale are restricted to the upper 190 m of sediment. Two diatom datums (Cavitatus jouseanus at 48.9 mbsf and Rhizosolenica antarctica at 68.60 mbsf), together with five Sr-isotope dates derived from molluscan fragments taken from between 10.88 and 190.29 mbsf indicate an early Oligocene (c. 31 Ma) age for this interval. The appearance of a new species of the bivalve ?Adamussium at about 325 mbsf, suggests that the Oligocene age can be extended down to this level. This confirms that the dominantly reversed magnetozone (RI), recorded down to about 340 mbsf, is Chron C12r. The ages imply high sedimentation rates and only minimal time gaps at the sequence boundaries. Below 340 mbsf there are no independent datums to guide the correlation of the magnetozones to the magnetic polarity time scale. However, the absence of in situ dinocysts attributable to Transantarctic Flora, if not a result of environmental control, limits the age of the base of the hole to between c. 33.5 and 35 Ma.
Resumo:
Neptunian dikes and cavities as weil as their fillings are described from Middle to Upper Devonian carbonates of the Warstein area. The genesis of the pre-Upper Carboniferous dikes is due to pre-orogenic synsedimentary tensional movements. Lifting, subsidence and tilting caused joints and cracks, which are enlarged to dikes and cavities on submarine conditions. The post-Upper Carboniferous dikes are based on the orogenesis during Upper Carboniferous time, causing numerous tectonical divisional planes in the sediments. Along these planes a far-reaching karstification took place since mesozoic time. According to their size the cavities are subdivided into macro-, mega- and microdikes. With the exception of one macrodike all the others are limited to the massive limestone. Megadikes especially occur in Upper Devonian cephalopod limestone and in the Erdbach limestone, microdikes can be found in all carbonatic rocks. The dikes follow pre-orogenic, tectonical and sedimentary divisional planes and are orientated to ac-, bc- as well as bedding planes and diagonal directions. The fillings happened down from above either in a solitary event or repeatedly in long-lived dikes during a span of several ten millions of years. More seldom the fillings took place laterally or upside from beneath. The dikes contain - without regard to autochthonous conodont faunas - older and/or younger mixed faunas, too. Occasionally they were used as life district by a trilobite fauna adapted to the dikes. The dikes represent sedimentary pitfalls and conserve sediments eroded in other places. Therefore, by aid of the fillings, it can be demonstrated, that stratigraphic gaps are not absolutely due to primary interruptions of sedimentation, but were caused by reworking. Some dikes contain the distal offsets of slides and suspension streams. Relations between condensation and development of dikes could not be derived in the Warstein area. However, an increase of the frequency of dikes towards east to the eastern margin of the Warstein carbonate platform could be pointed out. This margin is a slope, persisting more than 10 millions of years, between a block and a basin. Evidently cracks and dikes, which were caused by settlements, slides and earth quakes, occured there frequently. The Warstein dikes and cavities, caused by karstification, are filled with terrestrial Lower Cretaceous, marine Upper Cretaceous and terrestrial Pleistocene to Holocene sediments. Tertiary sediments could not be detected.
Resumo:
A linear, N-S-trending belt of elliptical, positive magnetic anomalies occurs in central Nordaustlandet, northeast Svalbard. They extend from the Caledonian and older complexes in the vicinity of Duvefjorden, southwards beneath the western margin of Austfonna and the offshore areas covered by Carboniferous and younger strata, to the vicinity of Edge¯ya. One of the strongest anomalies occurs in inner Duvefjorden where it coincides with a highly magnetic quartz monzonite-granite pluton at Djupkilsodden. U-Pb and Pb-Pb zircon dating of this post-tectonic pluton defines an age of c. 415 Ma, this being based on the Pb-Pb analyses of three specimens (Pb-Pb ages of 414±10 Ma, 411±10 Ma and 408±10 Ma) and a U-Pb discordia with an upper intercept at 417+18/-7 Ma. Neighbouring felsic plutons in central Nordaustlandet, including the Rijpfjorden and Winsnesbreen granites, lack magnetic signatures in their exposed parts, but have a similar Caledonian age. The central Nordaustlandet magnetic anomalies appear to be part of a circa 300 km long linear belt of late Silurian or early Devonian post-tectonic plutonism that characterizes the Caledonian basement of eastern Svalbard. Felsic intrusions of similar age further west in Spitsbergen are likewise both highly magnetic (Hornemantoppen batholith) and largely non-magnetic (Newtontoppen batholiths / Chydeniusbreen granitoid suite). They all appear to have been intruded at the end of the main period of Caledonian terrane assembly of the northwestern Barents Shelf.
Resumo:
Bedding dips in the CRP-3 drillhole were determined in three ways: (1) analysis of a dipmeter log, (2) identification of bed boundaries on borehole televiewer log images, and (3) identification of bed boundaries on digital images of the outer surfaces of oriented cores. All three methods determine both dip magnitude and downdip azimuth of bedding. Dipmeter results document variations in bedding dip throughout the logged interval (20-902 mbsf), whereas core and televiewer results are available at present only for selected depth intervals. Dipmeter data indicate that structural dip is remarkably constant, at 21° dip to azimuth 65°, throughout the Tertiary shelf section, except for the top 100 m where dips appear to be 5-10° shallower. This pattern, in conjunction with the systematically increasing dips throughout CRP-2A, suggests that the growth faulting active during CRP-2A deposition began during the final period of deposition at CRP-3. Normal faults at 260 and 539 mbsf in CRP-3 exhibit neither drag (localized dip steepening) nor significant changes in structural dip across them. Oriented core and televiewer analyses, covering a total of 200 m in the interval 400-900 mbsf, indicate bedding patterns that confirm the dipmeter results. The doleritic breccia at the base of the Tertiary section has steeper dips than overlying structural dips, possibly indicating a sedimentary dip to ENE in these fan sediments. Dip directions in the underlying Devonian Beacon sandstone are surprisingly similar to those in the overlying Tertiary section. Superimposed on the average Beacon dip of 22° to the ENE are localized tilts of up to 20°, probably caused by Tertiary fracturing and brecciation rather than original sedimentary dip variations.
Resumo:
During the Geological Expedition to the Shackleton Range, Antarctica (GEISHA) in 1987/88, samples were taken from twenty-one basaltic dykes for palaeomagnetic investigations. The directions of characteristic remanent magnetization (ChRM) of the dykes were determined by thermal and alternating-field demagnetization of 268 cores drilled from the specimens collected. Moreover, on account of the hydrothermal and sometimes low-grade metamorphism of the dyke rock and the resulting partial modification of the primary magnetization, not only were comprehensive magnetic studies carried out, but also ore-microscopic examination. Only thus was it possible to achieve a reasonable assessment and interpretation of the remanent magnetization. Jurassic and Silurian-Devonian ages were confirmed for the dykes of the northern and northwestern Shackleton Range by comparison of the paleopole positions calculated on the basis of the ChRM of the dykes with the known pole positions for the eastern Antarctic, as well as with polar-wandering curves for Gondwana. Radiometric ages were also determined far some of the dykes. Middle and Late Proterozoic ages are postulated far the dykes in the Read Mountains. Conclusions on the geotectonic relations of the Shackleton Range can also be drawn from the palaeomagnetic data. It has been postulated that the main strike direction, which differs distinctly from that of the Ross orogen, is due to rotation or displacement of the Shackleton Range crustal block; however, this was not corroborated. The pole positions for the Shackleton Range agree with those of rocks of the same age from other areas of East Antarctica and its positions in the Palaeozoic-Mesozoic polar-wandering path for Gondwana are evidence against the idea of rotation and rather suggest that the position of the Shakleton Range crustal block is autochthonous.
Resumo:
This paper reports the results of a preliminary palaeomagnetic investigation of the Admiralty Intrusives complex of northern Victoria Land, Antarctica. The samples were collected at Mt. Supernal and Inferno Peak, two pinions mainly formed of granodiorite and minor tonalite and emplaced at ab. 350 Ma at a high crustal level, as shown by amphibole geobarometric data and occurrence of miarolitic cavities. Microprobe and isothermal remanence analyses showed that magnetite. characterized by low coercivity and Curic point in the range 550-570 °C is the only primary ferromagnetic mineral. Stepwise thermaldemagnetization succeeded in isolatingamagnetization component. stable up to 530 °C. The virtual geomagnetic poles (VGPs) of the two plutons are different. That of Inferno Peak is consistent with the Australian palaeopoles of late Devonian-early Carboniferous age, whereas the location of the Mt. Supernal VGP probably results from the tectonic activity which affected the Ross Sea region during the Cenozoic.
Resumo:
Ferromanganese nodules (equivalent to Recent manganese nodules) are described from the Upper Devonian griotte (red pelagic limestone) of the Montagne Noire (S. France) and the Cephalopodenkalk of the Rheinisches Schiefergebirge, West Germany. They occur as encrustations, commonly exhibiting colloform structures, around skeletal material and limestone clasts. The nodules are associated with encrusting foraminifera and a development in the sublittoral environment is envisaged. Chemically, the ferromanganese nodules are depleted in manganese relative to iron, compared with Recent nodules, a loss which is attributed to diagenetic migration of manganese. Electron probe studies show that manganese covaries positively with calcium, but negatively with iron and silicon. Diagenetic enrichment of hematite occurs in the griotte at hardground horizons where two periods of mineralization can be established. The Devonian ferromanganese nodules show that solution of nodules has not occurred on burial.
Resumo:
In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07-174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X-ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain-size modes are distinguished of which only one is associated with a coarse ice-rafting signal - this mode is rare in the mid- and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down-core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain-size spectra. Coarse IRD (>2 mm) and IRD-grain-size spectra are rare in the last 9-10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.
Resumo:
A large fragment of a paleovolcano of Silurian to Early Devonian age was discovered in the Voikar volcanic belt suggesting an ensimatic island are as its geodynamic environment. Formationally, the rocks under study are comparable to Pleistocene island arc volcanites and their paleo-analogues. The volcanites of the Toupugol complex underwent strong hydrothermal-metasomatic alteration: propylites, acid metasomatic rocks and quartz-carbonate veins, which must have resulted from hydrothermal-metasomatic alteration of andesitoids. Both volcanites and apovolcanic hydrothermal rocks in Toupugol were found to host noble metal mineralisation. It is found in close association with sulphides, particularly pyrite. Free gold was discovered in all investigated volcanites and hydrothermal rocks and is characterised by low mercury content and an unusual set of microimpurities (Pt, Pd, Cu, Fe, S) suggesting its links to the mantle substrate.
Resumo:
By means of spectrographic analysis 96 samples of marine sediments were analyzed quantitatively for V, Ti, Zr, Co, Ni, Sc, Cr, and La, and semi-quantitatively for Ba and Sr. Ca has been estimated by visual comparison of spectrographic plates, and several Fe values have also been determined in the same way. Geographically 40 of these samples are from the Pacific Ocean basin, one of which is a manganese nodule, 21 from the Gulf of Mexico, 11 from Atchafalaya Bay, 8 from American Devonian to Miocene sedimentary rocks, 4 from the Mississippi Delta, 3 from the San Diego trough, 3 from off Grand Isle, 3 from Lake Pontchartrain, from Bay Rambour, 1 from Laguna Madre off the Texas coast, and 1 from the Guadalupe River, Texas. The afore-mentioned elements were sought using PdCl2 as an internal standard, after the method developed by Ahrens (1950) and his co-workers. Samples were run in duplicate, and standard deviations varied from 5 to 14 percent. Working curves, from which final values were obtained, were constructed with the use of standard granite, G1, and the standard diabase, W1, as standards. See Fairbairn and others (1951). An experiment was carried out to determine the effect of matrix change, involving CaCO3, on the spectral line intensities of the quantitatively analyzed elements. The distribution of each of the elements is discussed separately, and particular emphasis is given to oceanic "red clay", in which many elements are enriched. A general discussion is given to mineralogy of the sediments, cation exchange in its bearing on this thesis, and a brief recount of the two hypotheses of origin of oceanic "red clay". An application of the findings of this thesis to aid in the choice of the more likely hypothesis is made.
Resumo:
Petrographic and stable-isotope (d13C, d18O) patterns of carbonates from the Logatchev Hydrothermal Field (LHF), the Gakkel Ridge (GR), and a Late Devonian outcrop from the Frankenwald (Germany) were compared in an attempt to understand the genesis of carbonate minerals in marine volcanic rocks. Specifically, were the carbonate samples from modern sea floor settings and the Devonian analog of hydrothermal origin, low-temperature abiogenic origin (as inferred for aragonite in serpentinites from elsewhere on the Mid-Atlantic Ridge), or biogenic origin? Aragonite is the most abundant carbonate mineral in serpentinites from the two modern spreading ridges and occurs within massive sulfides of the LHF. The precipitation and preservation of aragonite suggests high Mg2+ and sulfate concentrations in fluids. Values of d18OPDB as high as +5.3 per mill for serpentinite-hosted aragonite and as high as +4.2 per mill for sulfide-hosted aragonite are consistent with precipitation from cold seawater. Most of the corresponding d13C values indicate a marine carbon source, whereas d13C values for sulfide-hosted aragonite as high as +3.6 per mill may reflect residual carbon dioxide in the zone of methanogenesis. Calcite veins from the LHF, by contrast, have low d18OPDB (-20.0 per mill to -16.1 per mill) and d13C values (-5.8 per mill to -4.5 per mill), indicative of precipitation from hydrothermal solutions (~129°-186°C) dominated by magmatic CO2. Calcite formation was probably favored by fluid rock interactions at elevated temperatures, which tend to remove solutes that inhibit calcite precipitation in seawater (Mg2+ and sulfate). Devonian Frankenwald calcites show low d18O values, reflecting diagenetic and metamorphic overprinting. Values of d13C around 0 per mill for basalt-hosted calcite indicate seawater-derived inorganic carbon, whereas d13C values for serpentinite-hosted calcite agree with mantle-derived CO2 (for values as low as -6 per mill) with a contribution of amagmatic carbon (for values as low as -8.6 per mill), presumably methane. Secondary mineral phases from the LHF for which a biogenic origin appears feasible include dolomite dumbbells, clotted carbonate, and a network of iron- and silica-rich filaments.