38 resultados para Demey, Ron: Birds of Western Africa
Resumo:
Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.
Resumo:
Geographic information systems allow the extraction and quantitative analysis of information from historical maps. The aims of this research were to examine the completeness of information represented on the 1881 Palestine Exploration Fund (PEF) map, to quantitatively reconstruct the landscape of nineteenth century Palestine and to explore whether spatial patterns in land cover/land use can be partially explained statistically by physical and human factors. Using historical aerial photos, we concluded that most of the major past landscape features were indeed shown on the PEF map, with an average overall correspondence of 53%. Forests and Mediterranean maquis were more abundant at distances greater than 2 km from towns and villages. Specific land cover/land-use types were associated with certain soil types, topographic regions and rainfall thresholds. In conclusion, the 1881 PEF map can serve as a reliable reference for understanding the land cover/land-use patterns of nineteenth century Palestine.
Resumo:
Diatom abundance and species composition were quantitatively studied in two latest Quaternary (~130 ka to the Present) sequences from the continental margin of northwest Africa. Off this region, coastal upwelling is well developed under the influence of the NE trade winds. Variations in diatom abundance in these cores are inferred to represent changes caused by varying degrees of the upwelling fertility. Times of high productivity are marked by high relative frequencies of Chaetoceros, while low productivity is marked by the dominance of Aulacoseira granulata. Upwelling increased during glacial episodes (isotopic stages 2-4 and 6) relative to isotopic stages 1 and 5. During the late Holocene, primary productivity levels are similar to those for Stage 5, but in the early Holocene upwelling intensities seem to have been weaker than today. The paleoproductivity reconstruction based on the diatom record is supported by paleoproductivity estimations based on the organic carbon content of the sediments (Sarnthein et al., 1987).
Resumo:
Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.
Resumo:
The Palestine Exploration Fund (PEF) Survey of Western Palestine (1871-1877) is highly praised for its accuracy and completeness; the first systematic analysis of its planimetric accuracy was published by Levin (2006). To study the potential of these 1:63,360 maps for a quantitative analysis of land cover changes over a period of time, Levin has compared them to 20th century topographic maps. The map registration error of the PEF maps was 74.4 m using 123 control points of trigonometrical stations and a 1st order polynomial. The median RMSE of all control and test points (n = 1104) was 153.6 m. Following the georeferencing of each of the 26 sheets of the PEF maps of the Survey of Western Palestine, a mosaicked file has been created. Care should be taken when analysing historical maps, as it cannot be assumed that their accuracy is consistent at different parts or for different features depicted on them.
SYNOPS: Synoptical observations from meteorological stations of West Africa, with links to data sets
Resumo:
Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.
Resumo:
Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.