40 resultados para Data mining and knowledge discovery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'Paleocene/Eocene Thermal Maximum' or PETM (~55 Ma) was associated with dramatic warming of the oceans and atmosphere, pronounced changes in ocean circulation and chemistry, and upheaval of the global carbon cycle. Many relatively complete PETM sequences have by now been reported from around the world, but most are from ancient low- to midlatitude sites. ODP Leg 189 in the Tasman Sea recovered sediments from this critical phase in Earth history at Sites 1171 and 1172, potentially representing the southernmost PETM successions ever encountered (at ~70° to 65° S paleolatitude). Downhole and core logging data, in combination with dinoflagellate cyst biostratigraphy, magneto-stratigraphy, and stable isotope geochemistry indicate that the sequences at both sites were deposited in a high accumulation-rate, organic rich, marginal marine setting. Furthermore, Site 1172 indeed contains a fairly complete P-E transition, whereas at Site 1171, only the lowermost Eocene is recovered. However, at Site 1172, the typical PETM-indicative acme of the dinocyst Apectodinium was not recorded. We conclude that unfortunately, the critical latest Paleocene and PETM intervals are missing at Site 1172. We relate the missing section to a sea level driven hiatus and/or condensed section and recovery problems. Nevertheless, our integrated records provide a first-ever portrait of the trend toward, and aftermath of, the PETM in a marginal marine, southern high-latitude setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two highly active mud volcanoes located in 990-1,265 m water depths were mapped on the northern Egyptian continental slope during the BIONIL expedition of R/V Meteor in October 2006. High-resolution swath bathymetry and backscatter imagery were acquired with an autonomous underwater vehicle (AUV)-mounted multibeam echosounder, operating at a frequency of 200 kHz. Data allowed for the construction of ~1 m pixel bathymetry and backscatter maps. The newly produced maps provide details of the seabed morphology and texture, and insights into the formation of the two mud volcanoes. They also contain key indicators on the distribution of seepage and its tectonic control. The acquisition of high-resolution seafloor bathymetry and acoustic imagery maps with an AUV-mounted multibeam echosounder fills the gap in spatial scale between conventional multibeam data collected from a surface vessel and in situ video observations made from a manned submersible or a remotely operating vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported file formats: - CrossRef XML file(s) - TRiDaS (Tree Ring Data Standard, http://www.tridas.org). Example: hdl:10013/epic.42747.d001 - IMMA (International Maritime Meteorological Archive). Used by the project CLIWOC (García-Herrera et al. 2007, http://doi.pangaea.de/10.1594/PANGAEA.743343) - NOAA IOAS (International Ocean Atlas Series). Example: hdl:10013/epic.42747.d008 - SOCAT (Surface Ocean CO2 Atlas, Bakker et al. 2014, http://doi.pangaea.de/10.1594/PANGAEA.811776) - CHUAN (Comprehensive Historical Upper-Air Network, Stickler et al. 2013, http://doi.pangaea.de/10.1594/PANGAEA.821222). Example: hdl:10013/epic.42747.d003 - Thermosalinograph (TSG) data. Format developed by Gerd Rohardt. Example: hdl:10013/epic.42747.d002 - Columus GPS Data Logger V-900 format to KML or GPX. Example: hdl:10013/epic.42747.d006

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present data set includes 268,127 vertical in situ fluorescence profiles obtained from several available online databases and from published and unpublished individual sources. Metadata about each profiles are given in the file provided here in further details. The majority of profiles comes from the National Oceanographic Data Center (NODC) and the fluorescence profiles acquired by Bio-Argo floats available on the Oceanographic Autonomous Observations (OAO) platform (63.7% and 12.5% respectively). Different modes of acquisition were used to collect the data presented in this study: (1) CTD profiles are acquired using a fluorometer mounted on a CTD-rosette; (2) OSD (Ocean Station Data) profiles are derived from water samples and are defined as low resolution profiles; (3) the UOR (Undulating Oceanographic Recorder) profiles are acquired by a equipped with a fluorometer and towed by a research vessel; (4) PA profiles are acquired by autonomous platforms (here profiling floats or elephant seals equipped with a fluorometer). Data acquired from gliders are not included in the compilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.