35 resultados para Crustacea - Geographical distribution
Resumo:
In the course of the voyages 9a and 9c (1967) and 19 (1970) of the RV "Meteor" samples of plankton and neuston have been taken in the area of the Great Meteor Seamount. The euphausiids of this material have been examined quantitatively as well as qualitatively in order to study the influence of the Great and Small Meteor Seamount on a vertically migrating group of plankton. 20 species could be identified. All stem from the surrounding deep water and belong to the tropical and subtropical fauna. On the plateau of the Great Meteor Seamount no indigenous species have been encountered and also the typical neritic species from the west coast off Africa are lacking. As for the euphausiids no relationships exist between the Great Meteor Seamount and the shelf area of West Africa. The dominant species around the Meteor Seamount were Euphausia brevii, Stylocheiron suhmii, E. hemigibba, S. longicorne and Thysanopoda subaequalis. Using the index of diversity (Simpson) distinct differences in the composition of species could be shown to exist between the plateau area of the Meteor Seamount and the surrounding sea. On the plateau of the Great Meteor Seamount the number of species was only 7, E. brevis and S. suhmii dominated. None of the species occurred in great numbers and none is adapted to the specific environmental conditions of the plateau of the Meteor Seamount. The fauna of the plateau is a depauperate one as compared with that of the surrounding sea. This can be explained by the fact that adult euphausiids require for their existence greater water depths than are found above the plateau of the Meteor Seamount.
Resumo:
In arctic populations of Macrothrix hirsuticornis life cycles are mainly governed by temperature. This was found by using laboratory cultures in combination with the analysis of population samples from waters in Svalbard. In arctic waters ex-ephippio-++ usually produce gamogenetic F1-++ together with a high percentage of oo, which have to fertilize the resting eggs. Temperatures around 14°C, which are very rare in waters of Svalbard, will induce parthenogenetic oo in the F1 and even the F2-generation, a mode of reproduction normally found in Macrothrix-populations of Central Europe. This was found in laboratory cultures of M. hirsuticornis from Bear Island, and there was evidence, that a similar cycle occurs in warm wells in Spitsbergen. The arctic distribution of M. hirsuticornis mainly depends on temperature, which regulates the speed of individual development. But this can only be understood together with the length of time, during which suitable life conditions are given. Physiological adaptations to life in waters in high latitudes could not be found, in spite of the extreme northern occurrence of M. hirsuticornis.
Resumo:
Four species of gammaridean Amphipoda are recorded from the Iberian deep sea basin at about 5000 m depth: Bathyceradocus iberiensis sp. n., Paracallisoma platepistomum sp. n., Parandaniexis cf. mirabilis Schellenberg, 1929, and Paragissa galatheae Barnard, 1961. The biology of the four species is discussed.
Resumo:
Introduction Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg's P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic.
Resumo:
Muskoxen populations were surveyed in the course of 3 expeditions to North East Greenland to provide data on present status and habitat requirements in the region between 72 and 74 deg latitude North. The distribution is primarily affected by the snow cover pattern and shows densities from less than 0.1 ind/km**2 to 1.5 ind/km**2. Ranges unutilized by muskoxen prior to 1940 now support high densities. The snow cover influences also the population dynamics, as shown by the streng correlation between the calf crop and the amount of snow. The total population is estimated to be about 1000 to 1500 individuals far the whole region.
Resumo:
According to the drilling probes of the Deep Waier Drilling Project, Neogene sediments in a tropical area of the Pacific Ocean are divided into 15 zones based on diatoms. The author shows that a unique zonation may be applied for the entire region. Identification of diatoms zones boundaries was conducted through their direct correlation with nannoplancton, radiolarian and foraminiferal zonal sceals. Their ultra-structure and morphological relationship are being analysed. The mode of siliceous accumulation within the equatorial belt differed through the western central and eastern region since the early Miocene and the difference become more evident from the end of Middle Miocene. The distribution of Neogene diatomaceous silt in the tropical area is controlled by the character of gyre-water circulation and agrees with the modern geographical zonation.
Resumo:
In this study isopod species of the Ross Sea were investigated. Literature until May 2008 was checked to provide an overview of all known and described species in the Ross Sea. This species checklist was then enlarged through material of the 19th Italica expedition in 2004. During this expedition for the first time a small mesh net (500 µm) was used. Nine thousand four hundred and eighty one isopod specimens were collected during this expedition. Through this material the number of isopod species in the Ross Sea increased from 42 to 117 species, which belong to 20 families and 49 genera. Fifty-six percentage of the isopods species collected during the Italica expedition are new to science. The zoogeography of the 117 species was investigated. A non-transformed binary presence-absence data matrix was constructed using the Bray-Curtis coefficient. The results were displayed in a cluster analysis and by nonmetric multidimensional scaling (MDS). This paper gives a first insight into the occurrence and distribution of the isopod species of the Ross Sea.
Resumo:
There are about 30 species of planktonic Foraminifera, as contrasted with the more than 4200 benthic species in the oceans of the world. Most of the planktonic species belong to the families Globigerinidae and Globorotaliidae. Of the 30 species, 9 occur in Antarctic and Subantarctic waters; however, none of these cold-water species are restricted to the Southern Ocean, except possibly the newly recognized Globorotalia cavernula (Be, 1967b). These species are distributed in broad zones of similar temperature in both the Northern and Southern Hemispheres. Hence, it is not possible to refer to these species as endemic to the Antarctic or Subantarctic, although some of them do appear in very high concentrations of 10 specimens/m**3 or more in the Antarctic regions. The plankton samples upon which the accompanying maps are based were collected between 1960 and 1965 on the research vessels Eltanin of the National Science Foundation (U.S. Antarctic Research Program), and Vema and Conrad of the Lamont Geological Observatory. All surface (0 m to 10 m) and vertical (0 m to 300 m) tows were obtained with plankton nets of uniform mesh size and material (NITEX202 = 202 µm mesh-aperture width) and were provided with flowmeters for quantitative readings of amounts of water filtered.
Resumo:
Two expeditions, undertaken in 1994 and 1996, provided quantitatively sampled material of sublittoral and bathyal meiobenthos from the Paso Ancho of the Straits of Magellan, the Beagle Channel, and the Patagonian continental slope (Chile). To investigate whether these distinct geographic areas might also be characterised by different harpacticoid assemblages, qualitative and quantitative analyses of Copepoda Harpacticoida were carried out. At supraspecific level 25 harpacticoid families were found, as well as several species that could not yet be assigned to any major harpacticoid taxon. Due to the high amount of collected Harpacticoida, detailed investigations at species level had to be restricted to six taxa, namely the Ancorabolidae, Argestidae, Cletodidae, Diosaccinae, Paramesochridae, and Paranannopinae. The corresponding specimens were assigned to 122 species in 52 genera. More than 80% of them are new to science. Qualitative comparisons of both species composition and species distribution allow the three areas to be distinguished in terms of species richness. However, statistical analyses confirm these results only partly. Similarity analyses applying non-metrical multidimensional scaling, as well as diversity analyses using the rarefaction method, suggest that the observed differences in distribution and diversity patterns are due to small-scale, local conditions, which may overlay possible large-scale ones.
Resumo:
The family Munnopsidae was the most abundant and diverse among 22 isopod families collected by the ANDEEP deep-sea expeditions in 2002 and 2005 in the Atlantic sector of the Southern Ocean. A total of 219 species from 31 genera and eight subfamilies were analysed. Only 20% species were known to science, and 11% of these were reported outside the ANDEEP area mainly from other parts of the SO or the South Atlantic deep sea. One hundred and five species (50%) were rare, occurring at only 1 or 2 stations. Seventy-two percent of all munnopsid specimens belong to the most numerous 25 species with a total abundance of more than 75 specimens; 5 of these species (40% of all specimens) belong to the main genera of the world munnopsid fauna, Eurycope, Disconectes, Betamorpha, and Ilyarachna. About half of all munnopsid specimens and 34% of all species belong to the subfamily Eurycopinae, which is followed in occurrence by the Lipomerinae (19%). Munnopsinae is the poorest represented subfamily (1.5%). The composition of the subfamilies for the munnopsid fauna of the ANDEEP area differs from that of northern faunas. Lipomerinae show a lower percentage (7%) in the North Atlantic and are absent in the Arctic and in the North Pacific. This subfamily is considered as young and having a centre of origin and diversification in the Southern Ocean. The analyses of the taxonomic diversity and the distribution of Antarctic munnopsids and the distribution of the world fauna of all genera of the family revealed that species richness and diversity of the genera are highest in the ANDEEP area. The investigated fauna is characterised also by high percentage of endemic species, the highest richness and diversity of the main munnopsid genera and subfamily Lipomerinae. This supports the hypothesis that the Atlantic sector of SO deep sea may be considered as the main contemporary centre of diversification of the Munnopsidae. It might serve as a diversity pump of species of the Munnopsidae to more northern Atlantic areas via the deep water originating in the Weddell Sea.
Resumo:
The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (<5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv, shipboard ADCP, 75kHz) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified to be followed by zooplankton in response to the eddy OMZ: i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy i), ii) and iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.
Resumo:
The distribution of Mn and Fe in water, sediments, hydroxide nodules and crusts of Eningi-Lampi ore-bearing lake is regular, and concordant from the source to the areas of accumulation of these components. Mn-Fe hydroxide nodules and crusts occur at the water-sediment interface, and more rarely in the upper (0-5 cm) film of brown watery mud. The leading role in the formation of Mn-Fe nodules and crusts is played by the chemosorption and auto-catalytic oxidation in the course of interaction of component-bearing solutions with active surfaces. This is considered to be the basic process for the model of ferromanganese ore formation in recent basins. Despite the differences in the physico-geographical and geochemical characteristics of lakes, mediterranean seas and oceans, the formation of ferromanganese hydroxide nodules and crusts in these basins may be explained by this model.