988 resultados para Counting 149-1000 µm fraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanographic changes in the western equatorial Pacific during the past 6 m.y. are inferred from carbon isotopic analyses of planktonic and benthic foraminifers from Ontong Java Plateau (DSDP Site 586). Sample spacing is 1.5 m (ca. 35,000-75,000 yr). An overall trend of d13C toward lighter values is evident for the last 5 m.y. in all four foraminiferal taxa analyzed (G. sacculifer, Pulleniatina, P. wuellerstorfi, and O. umbonatus). This trend is interpreted as an enrichment of the global ocean with 12C, because of the addition of carbon from organic carbon reservoirs (or lack of removal of carbon to such reservoirs), as a consequence of an overall drop in sea level. Differences between shallow- and deep-water d13C decrease slightly during this time interval, suggesting a moderate drop in productivity. This drop is not sufficient to explain the drop in sedimentation rate, however, much of which apparently must be ascribed to winnowing effects. A marked convergence in the d13C values of planktonic taxa exists within the last 2 m.y. We propose that this convergence indicates nutrient depletion in thermocline waters, caused by the vigorous removal of phosphate in marginal upwelling regions, or by the stripping of intermediate waters in their source regions. No large shifts are seen in the carbon isotope record of the last 6 m.y., in contrast to the oxygen isotope record. Some indication of cyclicity is present, with a period between 0.5 and 1.0 m.y. (especially in the earlier portion of the record).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the Vietnam Shelf more than 1000 miles of shallow high-resolution seismics were analyzed to unravel post-glacial evolution in a tropical, siliciclastic environment together with 25 sediment cores from water depths between 21 and 169 m to determine stratigraphy, distribution and style of sedimentation. Fourty-seven samples were dated with the AMS-14C technique. The shelf was grouped into three regions: a southern part, a central part, and a northern part. On the broad Southern Shelf, sedimentation is influenced by the Mekong River, which drains into the SCS in this area. Here, incised valley fills are abundant that were cut into the late Pleistocene land surface by the Paleo-Mekong River during times of sea level lowstand. Those valleys are filled with transgressive deposits. The Holocene sedimentation rate in this low gradient accommodation-dominated depositional system is in the range of 5-10 and 25-40 cm/ky at locations sheltered from currents. The Central Shelf is narrow and the sedimentary strata are conformable. Here, numerous small mountainous rivers reach the SCS and transport large amounts of detrital sediment onto the shelf. Therefore, the Holocene sedimentation rate is high with values of 50-100 cm/ky in this supply-dominated depositional system. The broad Northern Shelf in the vicinity of the Red River Delta shows, as on the Southern Shelf, incised valleys cut into the Pleistocene land surface by paleo river channels. In this accommodation-dominated shelf area, the sedimentation rate is low with values of 5-10 cm/ky. Where applicable, we assigned the sampled deposits to different paleo-facies. The latter are related to certain intervals of water depths at their time of deposition. Comparison with the sea-level curve of (Hanebuth et al., 2000, doi:10.1126/science.288.5468.1033) indicates subsidence on the Central Shelf, which is in agreement with the high sedimentation rates in this area. In contrast, data from the Northern Shelf suggest tectonic uplift that might be related to recent tectonic movements along the Ailao Shan-Red River Fault zone. Data from the Southern Shelf are generally in agreement with the sea-level curve mentioned above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of carbonate preservation in marine sediments have long been used to infer changes in ocean circulation or biogenic production. When combined with measures of organic carbon rain and calcite accumulation rates, quantitative estimates of changes in preservation can reveal variation in biogenic fluxes, the org. C to calcite flux ratio and saturation state of bottom waters. Here we develop quantitative dissolution proxies for mid to higher latitudes based on foraminiferal test fragmentation. Examining surface sediments, we find that fragmentation in G. bulloides and G. truncatulinoides is linear with increasing seabed dissolution rate and can be used to quantify changes in carbonate preservation. G. truncatulinoides shows a constant relationship of fragmentation to dissolution. However, we observe that, although linear to dissolution rate, the fragmentation in G. bulloides depends on which morphotype is present. Other species, such as G. inflata, have complex responses to increasing dissolution and are less direct preservation indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution record of foraminiferal fragmentation (a dissolution indicator) for the last 250 k.y. (isotopic Stages 1 to 7) is identified in the upper 61.9 m of Ocean Drilling Program (ODP) Hole 828A, west Vanuatu. This record is comparable in detail to the atmospheric CO2 record and the d18O stack. Phase shifts between preservation spikes and maximum ice volumes (d18O of Globigerinoides sacculifer) are analogous to those on Ontong Java Plateau. Mass spectrometer (AMS14C) dating of a sample taken at the base of dissolution cycle B1 and the position of the last glacial maximum indicates a lag in time of ~8 k.y. in the Vanuatu region for the last glacial termination. When dissolution spikes are compared with minimum ice volumes there is no phase shift for the last two glacial terminations. The difference between Vanuatu and Ontong Java Plateau may be explained by local CO2 sinks and the interplay between intermediate and deep water masses. Terrigenous input increasingly affected sediment of Hole 828A on the North d'Entrecasteaux Ridge (NDR) as it approached Espiritu Santo Island. Mud and silt suspended in mid-water flows become important after 125 ka, while turbidites bypass the New Hebrides Trench only towards the last glacial maximum (LGM). Terrigenous supply seems to affect the lysocline profile that changed from an "open ocean" to a "near continent" type, thus favoring dissolution. Fragmentation of planktonic foraminifers is a more sensitive indicator of lysocline variations than is foraminiferal susceptibility to dissolution, the foraminiferal dissolution index, the abundance of benthic foraminifers, or CaCO3 content. A modern foraminiferal lysocline for the neighboring area (between 10°S and 30°S, and 160°E and 180°E) is found at 3.1 km below sea level, compared to west Vanuatu where it is shallower. The past lysocline level was deeper than 3086 m during intervals of dissolution minima, and ranged from ~2550 to 3000 m during intervals of dissolution maxima. The high sedimentation rates (in the order of 10 to 50 cm/k.y.) found in Hole 828A offer a great potential for future high-resolution studies either in this hole or other western localities along the NDR. Areas of high sedimentation near continental regions have been discarded for paleoceanographic and/or paleoclimatic studies. Nonetheless, conditions analogous to those found in Hole 828A are expected to occur in many trench areas around the world where mid-water flows have preserved as yet undiscovered fine high-resolution sedimentary records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminifers from Ocean Drilling Program Leg 199 Holes 1215A, 1220B, and 1221C were examined across the Paleocene/Eocene boundary. Assemblages were studied in 240 samples. The benthic foraminiferal extinction event that correlates with the Paleocene/Eocene epoch boundary was recognized at these sites. Benthic assemblages before the event are characterized by high diversity, but those after the event are low in diversity. An assemblage of agglutinated foraminifers without carbonate cement was recognized at Sites 1220 and 1221. These assemblages were typically found after the event. The discovery of such agglutinated assemblages has never been reported before at this boundary.