24 resultados para Cordillera Bética
Resumo:
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km**2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub-páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007-November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C-horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow.
Resumo:
Miocene to Pleistocene sand and sandstone were recovered at Ocean Drilling Program Site 974 in the Tyrrhenian Basin and Sites 976 and 977 in the Alboran Basin. Sand detrital modes were determined for 45 samples from these sites, as well as 10 samples of Spanish beach sand. At Site 974, the Pleistocene section includes a number of volcaniclastic (vitric ash) and terrigenous sand layers; the latter are heterogeneous and contain sedimentary and metamorphic lithic fragments. Submarine canyon and onshore drainage patterns suggest that the most likely source of this sediment is the Tiber River drainage basin in central Italy, where a Pleistocene volcanic field is superimposed on Apennine orogenic rocks. In contrast, the Miocene sand in Unit III at Site 974 may have been derived from local basement highs. The quartzolithic composition and preponderance of metamorphic and sedimentary lithic debris in sand samples from Unit II at Site 976, Unit I at Sites 977 and 978, and Unit I at Site 979 are consistent with derivation from metamorphic rocks and sedimentary cover sequences that crop out in the Betic Cordillera of southern Spain (976-978) and in the Rif of Northern Africa (979). The sedimentary to metamorphic lithic fragment ratios in these samples reflect the relative proportion of metamorphic and sedimentary rocks exposed in onshore source terranes. In contrast, the source of the few quartzose Pleistocene sands at Site 976 was likely the Flysch Trough Units that crop out near Gibraltar. The significant volcanic component in certain intervals at Sites 976 (upper Miocene) and 977 (lower Pliocene to Miocene) is consistent with widespread volcanic activity during basin inception and development. Mean sand detrital modes for sand subgroups from both the Alboran and Tyrrhenian Basin sites plot in the Recycled Orogenic and Magmatic Arc compositional fields of Dickinson et al. (1983, doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2), reflecting the hybrid tectonic histories of these basins.
Resumo:
Carbon dioxide deep geological storage, especially in deep saline aquifers, is one of the preferred technological options to mitigate the effects of greenhouse gases emissions. Thus, in the last decade, studies characterising the behaviour of potential CO2 deep geological storage sites along with thorough safety assessments have been considered essential in order to minimise the risks associated with these sites. The study of natural analogues represents the best source of reliable information about the expected hydrogeochemical processes involved in the CO2 storage in such deep saline aquifers. In this work, a comprehensive study of the hydrogeochemical features and processes taking place at the natural analogue of the Alicún de las Torres thermal system (Betic Cordillera) has been conducted. Thus, the main water/CO2/rock interaction processes occurring at the thermal system have been identified, quantified and modelled, and a principle conclusion is that the hydrogeochemical evolution of the thermal system is controlled by a global dedolomitization process triggered by gypsum dissolution. This geochemical process generates a different geochemical environment to that which would result from the exclusive dissolution of carbonates from the deep aquifer, which is generally considered as the direct result of CO2 injection in a deep carbonate aquifer. Therefore, discounting of the dedolomitization process in any CO2 deep geological storage may lead to erroneous conclusions. This process will also influence the porosity evolution of the CO2 storage formation, which is a very relevant parameter when evaluating a reservoir for CO2 storage. The geothermometric calculation performed in this work leads to estimate that the thermal water reservoir is located between 650 and 800 m depth, which is very close to the minimum required to inject CO2 in a deep geological storage. It is clear that the proper characterisation of the features and hydrogeochemical processes taking place at a natural system analogous to a man-made deep geological storage will provide useful conceptual, semi-quantitative and even quantitative information about the processes and consequences that may occur at the artificial storage system.